Overview of C++, Sample C++ program, foerent data types, operators, expressions, and
statements, arrays and strings, pointers & function components, recursive functions, user -
defined types, function overloading, inline functions, Classes & Objects - I classes, Scope
resolution operator, passing objects as arguments, returning objects, and object
assignment. ‘

— ' - INTIroauciiorn

EEERERERE

-EEREREEE

R

R

POINTS TO REMEMBER E‘;‘

Object Oriented programmtng isway to organizing programs.

The key elements of cop are encapusalation, inheritance and polymorphism.

Procedure programms employs top down approach

OOP over comes all the problems of procedural programming.

OOP employs bottom up approach.

The building blocks of oop are classes and objects.

The real application of oop are in the areas where problems are large and compiler.

The array is a data structure to store collections of similar values under a given name.

Elements of an array are stored in contigous memory locations.

Elements of an array are accessed by name of the array followed by index within brackets. One

pair of brackets is used for each dimension.

Array must be declared and defined before use.

Arrays can be initialized at the time of declaration and defination.

C++ does not provide the boundary check on the elements of an array.

When an array is partially initialized the rest of the elements are set to zero.

Two dimensional array is a representation of table with rows and columns.

C++ language does not support data type however strings are handled as an array of characters.
C++ language uses null terminated variable length strings'.

A string constant in C++ language is a sequence of character enclosed in double quotes.

The difference between character and string is that the later one is a data type while former one |
is data structure. Strings uses array of character as its basic type.

C++ provide a rich library of functions for manipulating strings.

List of strings are handled by using two dimensional array of characters

There is rich library functions for manipulating strings. '

A structure is a collection of related elements, which ¢
i an be of difference types having a single

Each element of the structure is called the fleld
There are two ways to declare a structuer : tagged structure and tvpe defined structure

LO3DD Object Orienteq Pro

EREEEIN

RN

CRCRC I

R

' . d Igramming
he field of the structure using direct selection, dot operator ().
ss the 1l

d. In this case one dot operator is used for each leve| of ”Esting

We can acce -
lement of a union variable can be assigned a value,

Structure can be neste

i e
iven time, only oné .
g:lefliglds can be used in structures to save memory

is divided i | different section/area. T .
the memory is divided into severa a.The
When C++ program runs, f

heap.
are:code e, el ackirees o an operand.
;§$:;Zﬁ;ztion is done in two w:ays.statically and dyna‘micglly.
Static memory allocation is that which is dpne at compliati_on-tlmsj-.
Dynamic memory allocation is that which is done at compilation time.
Pointer are used to pass arguments by addresses.
A function can return pointer.
In an algorithm the steps are numbered and these steps are executed in their increasing org
Flow chart shows the order of execution of various steps. 3 er.
In a pseudocode, the steps are executed in sequence as they appear €XCept in cg
decision or a loop. ' S€ of 5
Object oriented programming is a way of organising programs.
The keys of oop are encapsulation, inheritance and polymorphism. -

Object oriented programming overcomes all the pr |
_ problem of proceduray '
OOP employs bottom up approach. D ? Pregramming aPproach,

OOP helps to solve large and complex problems.
C++ language is built on the top of C language.
CTH- language is middle Ievel—language and is portable

gram development are Creation, Compilation

se S€Cctiong

linking, testing ang

LUlidiunuiilo.

3. Executing a segment repeatedly either for a given number of times or till some conditions are
met.

= Different functions can be stored or separate files. In this approach you need to compile these

files separately and then link them together. To automate this process you can use turbo C++
compiler project facility.
=

Storage class determine the life time visibility of the variables. It also determine where the
variable will be stored. What will be their initial value if they are riot intialized.

& The different storage classes are auto, static, register and extern.

QUESTION-ANSWERS

Q 1. How is heap memory allocated in C++?

‘ (PTU, May 2009)
Ans. Every program is provided with a pool of unallocated memory that it can utilize during

execution. This pool of unallocated memory is known as heap. For allocation new operator is used.
The new operator allocates the memory and returns a

pointer to an appropriate type. The new operator

is defined as ’ _

type * new type [size in integer] ;

e.g. int*ni;

n1 = new int [100] ; '

It allocates a memory block of 200 bytes, 2 bytes for one integer, total of 10 integers.

Q2. What is data abstraction? - (PTU, Dec. 2011,2010, 2008 ; May 2011)

Ans. Abstraction refers to the act of emphasizing and representing essential features and
ignoring the irrelevant features. In object-oriented program

ming, word abstraction refers to the separation
between the specification of data and its implementation

. It results in better quality programs and
more efficient programming techniques. :
Such classes use the concept of data abstraction, they are also known as abstract data types.
Q 3. Relate object and class in OOP.

(PTU, May 2008)
Ans. The concepts of class and object are interrelated. We cannot talk about
regard for its class. There are differences

an object without
between these two terms. An object is a concrete entity that
exists in time and space. A class répresents only an abstraction, the essence of an object, as it were.
We may speak of the class mammal, which represents characteristics common to all mammals. To
identify a particular mammal in this class, we most speak of that mammal. In
oriented programming, we define

. the context of object-
| \ '@ class as a set of objects that share a Common structure and a
common behaviour. A single object is simply an instance of a class.

Q4. What is a class in C++? Discuss ge

PTU, May 2019 :
Ans. Class : A class serves as a plan or template. It specifies wh(¥ 2019 ; Dec. 2007)
luded in objects of that class. Defining th :

o iate. ; at data and what functions will
. ' fini SS doesn’t create any objects.

A class is thus a collectu?n qf Similar objects. In OOP, Objects are member of class

is a concrgte entity that exists in time and space and has an identity, wher | v
n abstraction, the essence of an object, » i ;reasnts
Generic class : Templates enable ys |

' to specify, with a s;

i : ’ single

related functions called template or generic functions or an entir. glec
classes or generic classec Ire ranAa

be inc

object
only a

ode segment, an entire range of
o e Y et R |

“ or a stack class and then C++ compiler y

ck of float class, stack of string class etc,

i generate

gle class template f
The Syntax

create a sin :
g tack of int class, sta

separate classes suchas s

of class template is
template <clas

class classname

s t1, class t?, >

J/ class member with_ type t1, t2
// whereever appropriate

es begin with the keyword template followed by list of formal parametersg to the
class template where each formal parameters must be preceded by the keyword class or type name.
Q 5. What do you mean by OOP? _ ~ (PTU, Dec. 2007
Ans. OOP is object oriented programming. Object oriented programmmg was to remove the
flaws of procedural programming approach. OOP treats the data as q most critical element in the
program design and does not allow it be scatterd around the program. It ties the data and the functions
that operate on it and protects it from the other functions. .
Object oriented programming allows decomposition of a problem into a number of entities calleq

objects and the builds data and functions around these objects.
The data of an object can only be accessed by functions associated to it. However, function of

one object can access the function of another object. The communications among functions of different
objects is called messaging. Characteristics of object oriented programming are :

1. Emphasis is on data rather than functions.

2. Programs are divided into set of related objects.

3. Objects communicate with each other through functions.

4. Data of an object is hidden and cannot be accessed by external functions.

5. Functions that operate on the data of an object are tied together with the data structure.

Q 6. Explain some objectives of object oriented programming. (PTU, Dec. 2007)
Ans. Following are the objectives of object oriented programming :
jl. Obieqts. k An object is an entity that has state, behaviour and identity. The structure and
pehamur of similar objects are defined in their common class. The term instance and object are
interchangeable. : -
sa s:;o‘z';: : rf\ Cla:s represents only an abstraction, the essence of an object, as it were. Class
Jects that share a common structure and a comnmon behavi i iect is simpl
an instance of a class, aviour. A single object is simply
lo:ms:; ::il:g'?eoftjpnzit?omn : Polymorphism can be defined as a technique that allow to define various
& nbee s Inﬁr D.Pe[ator: that can‘be shared by various objects to perform the operations.
structure or behaviour d f'emar‘ca ' a relationship among classes wherein one class inherits the
efined in one or more classes. A class from which another class inherits is

called its super class, parent
Clas - : ;
class or derived Class'. S and a class that inherits from one or more classes is called sub

5. Encapsulation : Enca
world. The data and functions a

}
All class templat

And cout statement? (PTU, May 2007)
and the extraction operator >>, which cause values to bé

R ——

Cout : Output is most i '
p commonly handled in C++, with the cout object and <<insertion operator

which together cause variables or con
stants to be di
screen. We can read the fils sing e ;Soiﬂflyed to the standard output device usually the

2

known as name mangling of functions. With this

n i - ; :
the program work the same way for objects of b F bans e T overiding iunctiens, the calls n

: oth base and derived class
Q 9. What is a manipulator? Why do we need it? i

Ans. M_anipulators are operators used with the
the way data is displayed. The most common manipulators are -

1. endl : This manipulator causes a linef i '
\ _ eed to be inserted into the stream.
effect as sending the single ‘\n’ character. : 1 i dhesame

: ' (PTU, Dec. 2006)
Insertion operator << to modify — or manipulate

_ 2. s..’.e?w : The setw manipulaftor causes the number (or string) that follows it in the stream to be
Dﬂ';]tedt;‘"t?‘nl : field n characters wide, where n is the argument to set w (n). The value is right-justified
within the Tielq. : ‘

Q 10. What does the name C++ signify? What is information hiding? (PTU, May 2005)

Ans. Classes were a major addition to the original C language. Initially it was called ‘C with
classes’. However, in 1983, the name was changed to C++. The ideas of suffering C with ++ came
from the increment operator, since new feature are added to the features that existed and being used
since long. \

C++ is a superset of C. All C programs are also C++ programs.

Information Hiding : An object functions, called member functions in C++ provide the only
way to access its data. If you want to read a data item in an object, you will call a member functionin
the object. You can’t access the data directly. The data is hidden, so it is safe from accidential
alteration. Information hiding is important, so that outsiders can use or access the data.

Q 11. What is the main purpose of header files in ‘C++’ program?
(PTU, Dec. 2005, 2004)
Ans. Header files are added with the preprocessor directive #include. It tells the compiler to add
the source file before compiling iostream.h is an example of header file. It contains declarations thatt
are needed by the cout identifier and the <<operator. Without these declarations the compiler won't
recognize cout and will think << is being used incorrectly. -

i weaknesses of ‘C’ and the three strength ‘C++'.
Q 12. List out the three ——

T”ﬁ?ﬁ?ﬁiﬁsxgﬁhé structured programming ‘C'is, large oroblems become excessively
complex.

2. Since every functionh
the same way, global

3. Many functions access !
arrangement of data can't be ¢

Str ‘Ce++': ' -l :
; egﬁ‘t;l; c;ff;-;on is written, created and debugged it can be distributed to other for use Ir

their own programs. This is called reusability.

as complete access to data. Anyone can change or destroy them. In
data can be corrupted by functions. N

he same data, the way the data is stored becomes critical. The
hanged without modifying all the functions that access It.

LO3DD Object Oriented Prq

grammiing

to subclasses. In C++ the original cla_ss is calleg the b .
are its characteristics. These are calgq derivez

6

jvided in

d
2. Cs+ class can - n be defined that sh

class, other class ca

CRaBgos: r or function overloading. Using operator or functions i

s provision of operato ; ; :
3. C++ h.-z\’se ,’;;o:cljsi;%non w‘;at they are operating on, IS called polymorphism.
ways,

: hich no object will never be ¢ '
: to specify a class fromw reateq?
Q13. Is it sometimes useful to Specily (PTU, Dec. 2004)
: hich no object will never be ¢
imes useful to specify a class from W ; - “Teated,
metimes r deriving other classes, and no actual object of this ¢jags is

differgpy

Ans. Yes, itis sO
Sometimes classes aré created only fo

called abstract classes. ..
createg' 1T: e;i::,ewm you use the word protected in c++? (PTU, May 2004

d by member functions in its own class or in an
ted member can be accesse ' ' .
: nse;: fmei(l:s own class. It can’t be accessed from functiqns outside these classgs such as
Cla'snS ()eavember functions can access members of the base class if the members are public or jf they
main ().

ected. ' c] |
e pthVhen any data or functions that the derived class might need to access from base class it

de protected rather than private.
smbob?&mgiv: two advantages of OOP. . (PTU, May 2004)
Ans. Foliowing are the advantages of OOP : | |
1. The concept of OOP is data encapsulation and data abstraction that increases the reliability
of the software systems by separating the procedural and representational specifications
from its implementation. '
2. Inheritance enhance the reversability of the code, thus increasing the productivity.
Q 16. What is data encapsulation? (PTU, May 2004)
Ans. An object functions called member functions in C++, that provide access to its data. If
you want to read a data item in an object, you call member function in the object, it will read the item
and return the value to you. The data is hidden, so it is safe from accidental alteration. Data and its

function are said to be encapsulated into a single entity. Data encapsulation and data hiding are key
terms in the description of object oriented languages. '

Q17. What are the types of operations that can be performed on objects?

Ans. Following are the operations that can be performed on objects

1. Constructor : An operations that creates an object or initializes its state.

2. Destructor : An operation that frees the state of an object and destroys the object itself.
3. Modifier : An operation that alters the state of an object. |

;. Selector : An ope_ration that access the state of the object but does not alter it.
- lterator : An opertion that permits all parts of an object to be accessed in some well defined

. utyour name and phone number into these
Ant:in this objects. (PTU, May 2009)
class person { |
private :
char name [20] :
int telephone;

public -

telephone = no '

void display ()
{
Cout <<"Name jg" << name :
Cout <<"Telephone NO. is" << telephone -

}

void main ()
{
person *obj1 ;
obj1 = new person ;
char na [20] :
int no ;
cout <<"Enter name & telephone no." :
cin >> na >> no ;
obj1 — get data (na, no) ;
obj1 — display ():

}

Q 19. What is meant by the interface of a class?

Ans. The interface of a class provides outside view of a class and encompasses the abstraction
while hiding its structure and the secrets of its behaviour. This interface consists of the declarations
of all the operations applicable to instances of this class, but it may include the declarations of other
classes, constants, variables and exceptions that are needed to complete the abstraction.

Q 20. Compare structured and object oriented programming with the help of suitable
examples. (PTU, Dec. 2009 ; May 2008)

Ans. Structured programming is also known as procedural programming or functional
programming. In this, given problem is divided into .small sized sub-problems, each sub problem
represents a specific task that can be handled efficiently and effectively. Then to solve each sub

ion is written.
proble.,rfrh,eat;‘:;fi:):e Sof hierarchical decomppsition has l?een used to specify the tasks to be compl?e:‘eg
to find solution of a problem. These functions are written to manipulate the data to accomplis

specific task. Characteristics of structured programming are :

is is on algorithms. |
Ean:g: ?)?‘losg';ms arge divided into smaller independent subprograms known as functions.

jori ' lobal data.
Majority of the funtions share g
Furjlctioyns transform data from one form to another.

-down approach to program design. I
EIE: mp'?'!);sc:?fhg?arogr:ti are heavily dependent on each other i.e. tightly coupled to each
epa

ther. Therefore, it is difficult to make a change in one part of the program without affecting
other. :

DA WWN -

r. o
7 ?:eo;:?:gram logic dependent on the organization of data.

E;cample of structured programming are Basic C etc.

LAV VUJTLL UiChleq PrOgramm-
ing

ncitind ect oriented programming treats the data aq a critj
o'?,“t Orleﬂt:n design and does not allow it be scattered arounfj the program. It ties the d';fl

element in the prog::t operate on it and protects it from the other functions. a

and thg gg«:;g::s decomposition of a problemintoa number of entities called objects ang then builgs

: jects.

data and fL:jncuo;}sairgg?; :*::9;90?1?:’ be accessed by functions associat._ed vyith it. However, function
Th; e:lz aon access the function of another object. The communications among functiong of

G Ol GO aracteristics of OOP are :

' ' i ing. Ch
different objects is called messaging i
' 1 Elmphasis is on data rather than functions.

Programs are divided into set of related objec?ts.
Employs bottom-up approach to program design.

2
3. .
4. Objects communicate with each other through funcn’ons. |
5. Functions that operate on the data of an object are tied together with the data structure,
6

Data of an object is hidden and cannot be accessed by external functions.
7. Data structures are designed in such a way so as to characterize the objects.
The organisation of programs using object oriented programming approach overcomes g the

8 e —— \
Programming : Obj

problems of structured programming.
The object-oriented programming use objects as basic building blocks, where each object is an

instance of some class and classes are related to each other through inheritance. Some concepts

uesd in OOP are : .
Objects, Classes, Abstraction, Encapsulation, Data Hiding, Inheritance, Overhiding,

Polymorphism, Dynamic binding, Message passing.
Examples of OOP's are C++, JAVA efc. i
Q 21. Write a program to read data from the keyb
the same data from the INPUT file, and display it one the screen.
Ans. |
#include <iostream.h>
#include <fstream.h>
class student

{

oard, write it to a file called INPUT, again
(PTU, Dec. 2007)

private :
char name [20] ;
int age ;

public :
void get data ()

cout <<"Enter name" ;
cin >> name :
cout <<"Enter age" :
cin >> age ;

}

void show ()

cout <<’Name is" <<name
cout <<"Age is" << age ; '

1 N
void main ())
(_

charch :

Student s1 :

fstream file :

file.open ("Input. Dat", ios : ios ; : ' i

cout <<“Entepr) student dasta“ ;’:\pp HORG agh e ey
s1. get data ; :

file.write (char *) & s1, size of (s1)) ;

cout <<"Is another student" ;
cin >> ch :

}
while (ch = ='y") ;
file.seekg (0) :

file.rea_d ((char*) & s1, size of (s1));
while (! file.eof ())

{
cout <<"Student" :
s1. show () ;
file.read ((char *) & s1, size of (s1));
}
} |
Q 22. How the structures in c differ from that of structure in C++4? (PTU, May 2007)

Ans. A structure is a collection of simple variables. The variables in a structure can be of
different types. Some can be int, some can be float and so on. The data items in a structure are called

members of the structure. InC Pprogramming, structures are considered advanced feature and appears
atthe end. Where as in C++, structures are one of the important concept in understanding of objects
and classes. Structures in C++ and C serves a similar purpose to record data of different type. To
access a structure, we need a variable of that structure. In C we need to include the keyword struct in
structure definitions, where as in C the keyword is not necessary. e.g
struct student
{
int age;
" char name [20] ;
chargrade ;
In C+-L its variable can be defined as
student s1.;
where as in C, we need to add keyword struct also
struct student s1 ; '

otherwise use of structures in C++and C are's‘_ame.o TN
Q 23. How can the strings be represented in C++? ,

' f characters, we can store string data. A

i ay of characters. Using array o . cters, ’
strin ﬁlng.ISt_r ot ;g Ianth array of characters that is delimited py null character E‘\?J{a(éizz
'anggage d;;s:i)erﬁtr:Ee use of any character except the null character. Itis common touse fo C

Characters such as tabs, format specifiers etc. in strings.

LO3WD Ubject Orienteq Pro

“ gramming

A string is represented as array of characters. It is terminated by thg null (\07) charagy
use a string is stored in an array, the name of the array and hence string, is a POinter 1 tir.
ning of the string. e.g. . e

char str[] = "You are welcome" : "
In this stris array of characters that stores string "You are welcome" and compiler automaﬁca"
nds the null character.

Q 24. Write a program to accept the record of 5 persons with their names, age & addr
o display them. Use structures to implement the program. (PTU, m

Ans, '

#include<iostream.h>

using namespace std;

struct student

{

char name[50]

int age;

char address[100];

esseg
ay 201 4)

int main (void)

{

struct student stud[5];

int i; ' e
cout<<"Enter Students record five times\n”;
el L W SRR N
Cout<<"Enter Students Data\n™:

for (i=0;i<5;i++)

{

cout<<"\n Enter Student Name please:”;
cin>>stud[i].name; '
Cout<<"student Age:”;

cin>>stud[i].age;

Cout<<"student Address:”;
cin>>stud(i].address:

} |

cout<<“\n............... Display Student Data \n”;
Coute<". ... \n”;

for(i=0;i<5;i++)

(.

cout<<"\n Student Name“<<i<<”:<<stud[i].n'ame;
cout<<\n Student Age“<<i<<":"<<stud[i].age;
cout<<"\n Student Address“<<i<<":"<<stud[i].address;

}

return 1;

}

Q 25. Discuss the features of an object oriented Programming in detail.

. ‘ 6)
. (PTU, May 2010, 200
Ans, Following are the featy res of object oriented proarammina *

The concept of inheritance provides reusability
4. Reusability : Once a class has be i '
enw - :
other programmers for use in their own programrsm'el'z’i; :: E(I:te!f1 3nd e Gt ©
. . i a e ili

In OQP. the concept of inheritance provides an important -dreusafabnhty. K
take an existing class and without modifui. - Idea of reusability. A programmer can

5. Polyinérohlasand oret 'ying it, add additional features and capabilities to it.
i -‘f. R erloading: Polymorphismis a technique that allow to define various
= (o - mgiS " dor operator that_can be shared by various objects to perform the operations
pL.!yn'rc?rp | hac \eved using overloading and dynamic binding. When an existing operator such as
+or=is givent .e cqpat_nllty to 'opferate On a new data type, it is said to be overloaded.

) 6‘: Dynaml;;: Bmdmg': Binding is the Iinki.ng of a function call to the function definition that will
be ex&uteq or_1 the call during _prggram execution. The function call is tied to the function definition
during the linking process. .ThIS is known as early binding. However, the OOP permits dynamic
binding also called late binding, where the tie-up of function call to the address code is delayed until

the run-time.
Q 26. Write and explain the syntax of a class declaration in c++. (PTU, May 2004)

Ans. The syntax of specifying a class is similar to specifying a structure as shown below:

class classname

{

Access specifier ;
// data members
// function members

} -
c¢) determines which parts of a software can

The access specifier (private, protected or publi
access these members of a class. By default, access specifier for a class is private and an access

specifier remain in effect till overridden by another access specifier.
The data members describe the structure of the objects. The function members describe the

behaviour of the objects. . :
Each of these members can be declared as private, protected or public. The private members

can only be accessed from within the class. Members of the class and members of it subclass can
access a protected member. The public members can also be accessed by non-members of the

class, i.e. from outside the class. _
Q 27. Name popular C++ compilers available.

Ans. Following are the C++ compilers : _
1. C++ Compiler on windows platform : On window based plateform, tur

he user’s preferred choice. The turbo C++ compiler can be used in two different ways - |

(i) The frequently used method for creating programs in Turbo C++'s Integrated !nge Opﬂ_l;;
=nvironment. In this, a|| necessary operations for program development are available in a uni
creen display with menus and windows.

bo C++ compiler i

LO3DD Object Oriented pmg’ammin
raMming

d line system in which the fun miﬂr\;;f

++ comman
and pr
are invoked from the command prompt as Separay,

12
(i) The second met
editing, compiling, linking an

programs.
2. C++ compiler on unix pla

compiled and if there is no syntax erro
stored in file a out. To run the program, type the

3. C++ compiler on linux platform : In
program will be compiled and if there is no syntax erro i
libraries and the code is stored in a.out. To run the prografti,

prompt.
Q 28. What is data hiding?
Ans. Data hiding is also called th
into a single unit known as class is ca
outside world and there are accessed on e
i ' i tween the objects
function provide the interface betwe J (PTU, Deo. 20")

Q 29. Write short note on Information hiding. _ N . :
Ans. The wrapping up of data and functions into a single unitis knowp as encapsula_tlon. Data
of class. The data is not accessible to the outside worlg

encapsulation is the most striking feature : ; ‘
and only those functions which are wrapped in the class can access it. These furyctnons provide the
interface between the object’s data and the program. This insulation of data from direct access by the

program is called data hiding or information hiding. |
Q30. What is polymorphism? Give difference between function overloading and overriding
(PTU, May 2011)

with example. :
olymorphism can be defined as a technique that allow to define various

Ans. Polymorphism : P
forms of a single function or operator that can be shared by various objects to perform the operation.

The polymorphism is achieved using overloading and dynamic binding.
e.g. #include <iostream.h> |
Class A

{

hod is a traditional C

d executing a program
mmand prompt. The program wj

: is we use €O . _
tr'f?trvr\rr:ll.bgllitr:]ll{zd with system librar ies and the executable cqqq .
’ name of file at comma_and prompt. |

this platform, again comma_nd pf?mpt is used, Ty
ly will be linked with Syston

r, it subsequent -
enter the name of file at COMMang

(PTU, Dec. 2019)
data. The wrapping up of data and functig,

lled the data hiding. In this, the data is no_t accessible 1o th
ly to those unctions which are wrapped in the class. Theg,

data and the program.

e encapsulation of

Public :
- Void show ()
{
b
Class B : Public A
{

Cout <<"Base”;

Public :
Void show ()

{

}i
Class C : Public A
{ -

Cout <<"Drived1”:

Public :
Void show ()

{

i Ty e s wiary 1

Cout <<"Derived 2" 13

Void main ()

{
B obj ;
Cobj1:
A* Ptr ;
Ptr = Obj y
Ptr = show ()
Ptr = obj 1 ;
Ptr = show () ;

}

This is example of function
function is type of polymorphism.

Q 31. Different between a structure of the data type and a union.

overloading show () is overloaded in derived class B and C. AND

(PTU, May 2011, 2009)
_ OR
How is union different from structure?

(PTU, May 2012, 2007)
Ans. Union is same way similarto a s

tructure, but in other ways are completely different,
allow us to store data items of different data types. But these data items are stored in same memory

and store one value of given type at one time and another value at different time. The size of memory
allocated depends on the data item whose Memory requirements are more. The syntax for declaring
a union, declaring variables of union type, accessing elements of a union, is identical to that of
structures, except for storage of members of union and their initialization. :

Q32. What is meant by cast operator? _ (PTU, May 2005?)

Ans. Cast Operator : When we want to convert between user deflnetl:l data types e_md basic
types, we can’t rely on built in conversion routines, since the compiler doesn’t know anything al?;ut
user-defined types besides what we tell it. When we need to convert a value from one type to another
then the compiler will not do it automatically.

e.g.
-#include <iostream.h>
~void main ()
{
int n =25000 ;
=(n*10)/10; |
20ut(<<"Nc)>. is" << n; // wrong answer
n=25000 ;
*10) : // cast to long
n=(long (n) *10)/10; -
cout(<<?n(o.) s"«<nj. // right answer
}

: i is coerced into
' long before multipling. This is called cerosion the data Is co
We can cast n to type lo

becoming another type.
Q 33. Explain the use of ternary operator in C++.
Ans.Ternary Operator:
Syntax of ternary operator IS
exp1 ? exp2 : exp3’

(PTU, May 2009)

LO3DD Object Oriented ngramm'
lng

14

xpressions. ,
teed first. If it is non-zero, then the expression exp2 js valuatey

Where exp1, exp2, exp3 are e
expression exp3 is evaluated ang that is
e

The expression exp1is evalua | .
and that is the value of conditional expression otherwise

value of the conditional expression.
e.g.big=(a>b)?a:b; _ _
Q 34. What is a scope resolution operator? What part does it play in definition of Membey
functions? (PTU, May 2009, 2005 ; Dec, 2005,
Ans. Member functions can be defined outside the class using scope resolution Operator (.)

is scope resolution operator. Scope resolution operator we use _to define,.function outside the class'_
For this, function is declared in the class and its definition IS written outside the class, |ts Syntay i

return type class name : : member function (argument list) ;
(PTU; May 2009)

Q 35. Explain the syntactic rules for setfill manipulator. no: (PTU
Ans. Setfill manipulator is predefined parameterized manlpglator. This is dehped In iomanip
header file. It don't need an object to invoke them as in'the case of ios member function that can only

be invoked on an object of output stream..
It is used to set the file character.'Its syntax is

setfill (int)
e.g. output <<setfill (") ;

It set fill character as ™. o :
Q 36. How is the basefield of a number defined in C++7? (PTU, May 2009)

‘Ans. Basefield of a number is defined by using self () function, which is a member function
function of the ios class, and can be invoked only on an object of output stream. Its prototype is

long setf (long-setbits, long-field) ; _

where the first argument_setbits is one of the flags defined in ios class and it specifies action
required for the output. The second argument_field is also defined in ios class specifies the groupto

which formatting flag belongs.
Flags that are used with self () function for defining basefield of a number :

E’ Flag Field Action :
f 1. doc basefield . - [Integer value is output in decimal base.
! 2. oct Integer value is output in the octal base.
1 3. hex Integer value is output in hexadecimal base.
Q 37. Explain the salient features of the typedef. (PTU, May 20;9-)

Ans. Typedef : A type definition typedef, gi '
tion, » §IVES a name to a data type by creating a new type

that can be used anywhere atype is permitted. The syntax for type definsift?on ig .

typedef datatype identifier :

where data type is either built-in data t ' ' '

. eo - ' ifi
upper?'.aes. el g?therd L;Tael;yie;med data type and identifier, usually in
he typedef keyword tells the ' ' " :
010 haalatement compiler to recognize the identifier as synonymous of data typeé:
typedef float real :
Creale real as a new name for float data type

Q 38. Specify the steps to develop and execute a program

Ans. Following are the steps 1o develop and exec: it (PTU, Dec. 2008 ;May 2008

Introduction -

15
1. A programmer cannot write program unless he knows

i how to solve problem :
Important that before attempting to write a prog manually. Itis
mannually. pting program, plrogrammer must solve the problem

In order to ensure that the program instructions are appropriate for the given problem and
are In correct sequence, program must be planned before they are written P o
3. Then write algorithm. An algorithm is a finite se '
of a particular problem.

Next step is flowchart. A flowchart is a pictorial representation of an algorithm. A flowchart

uses different shapes to denote different types of instructions.

5. Then write program and compile that program to find errors in it and then execute the
program. -

Q 39. What are static variables? (PTU, Dec. 2008 ; May 2008)

Ans. A static variable has the visibility of a local variable but the lifetime of an external variable.

Thus it is visible only inside the function in which it is defined, but it remains in existence for the life
of the program. :

Static variables are used when its necessary for a function to remember a value when it is not
being executed that is between calls to the function. When static variables are initialized, the initialized
takes place only once at the beginning of the program. They are not reinitialized each time the
function is called, as ordinary automatic variables are.

Q 40. What do you mean by precedence of operators? (PTU, Dec. 2008 ; May 2008)
Ans. Precedence is used to determine the order in which different operators are evaluated inan
expression. Precedence is applied before associativity to determine the order in which expressions
are evaluated . The concept of precedence is well defined in mathematics like rule of BODMAS. In
algebra division and multiplication is performed before addition and subtraction.
e.g. 10+2*5 |
This expression consists of one addition and one multiplication operator. As multiplication has
higher precedence than addition and this multiplication is performed before addition. Therefore, the
expression will be evaluated as
(10 +(2*5)) > (10+10) > 20
giving value 20 as value of the entire expression.
Q41.What is type casting? ~ (PTU, Dec. 2011, 2008 ; May 2008)
Ans. The type casting changes the meaning of the basic data type with which they are used.
Type casting applies to data conversions specified by the program_mer, gome’umgs we need_to convert
a value from one type to another in a situation where the qor_npuer.wul not do it automatlcally_. e.g.
suppose an integer variable a has value 25000. W!1en we multiply this by 10 the result 250000, is too
large to fit in variable of type int or unsigned int. This leads to wrong answer. We can use typecasting

ato type long before multiplying. The expression

long (a : ; : i
casts o ?o(t Jpe long. It generates a temporary variable of type long with the same value as ais

the temporary variable that is multiplied by 10. Since it'is type long, the result fits.

i i e of break with switch statement in C++. _
7142 Brielly explain he €2 (PTU, Dec. 2008 ; May 2008)

Ans. The break statement is always used inside the body of switch statement.

In switch statement, it is used as the last statement of the statement block of every C?SG
except the last one when executed it transfers the control out of switch statement a_n'd the execution
of the program continues from the statement following switch statemer;t. lts syntax IS

qqence of instructions defining the solution

. LO3DI Object Oriented Programming

L//// T

switch (expr-)

{

case val-1;
statements

break ;

case val-2 ;
statements

break ;

case val-n,;
statements
break ;

default ; _
statements

cuss with an example. (PTU, Dec. 2007)
| from one part of the program to another part. These
ontinue and goto statements are control statments.

}
Q 43. What is acont

Ans. Some statemen

statements are known as con
e.g. #include <jostream.h>

rol statement? Dis
ts transfer the contro
trol statements. Break, €

void main ()
{
inti=0,k, m
while (i <= 100)
{ |
cin>>k;
if (k==0)
break ;
m=ik;
cout <<m,
} ;

i Olfl:) :hi: gx;mlpzle, the executiort of the while loop will be terminated as soon as the user enters
variable K as input or the value of variable i exceeds 100, which ever happens earlier

Q 44. Why it is better to use symbolic names for size specification in average?
Ans. We should d - PTU, May 2007)
directive #define. Also knzs\:ir:st:e Stlgze' of an array or specify constants using t(he pfePfgcessor
ymbolic name. This directive sets up an equivalence between an

indentifier and a text phrase. e.g.
#define size 20

appearing at the begining of
{6 text 20 thioughoutthe pmg% :':33; ziraong?trzm sg:;eciﬁes that the identifier size will be replaced Y
Q45. Why do an ar pecify the data type of the ¢ i '
ray subscripts start from 0 instead of 1? et (L::S;"E #Mde:;zéﬂ)
,Ma

Ans. An array subscri
_ pts start fr i
integer constant or integer variable. om Oinstead of 1. The value of each subscript expressed 2"

In computer memory
: ol y an array Wi b]
and multiplyed b ' il be given memory as m p
Yy SUbSCrlpt value. A t uch as I n I
nd first m - i I feqmrerfi'n? t thltS data tﬁ re

assigned to first memory

Q 46. What is structure? How is jt d
Ans. A structure permits the data item

. _ S to be of different data t es. These data items occu
contiguous memory locations. The data items in a structure are calleg ﬁ-:embers of .
syntax for declaring a structure ig

struct tag

In array we start its subscri tfrom0j it
address of array. P MU instead of 1 as it i
eclared?

..............

The declaration starts wi
identifier for the structure and

€.g. struct student

{

th the keyword struct

_ - Next element in declaration is tag. The tag is
will be used to declare

variable, arguments of the fy nctions.

int roll no :
char name [20] :
char grade ;

};

responding,

Therefore, care must be taken to initialized pointers with valid address.

Q 48. What does a header file contains?

#include statement.

Q 49. What is the advantage contiguous memory allocation in

Ans. An array is a collection of homogeneous data elements (i.e. of same data type) described
by a single name and each individual element of array is referenced by a subscripted variable formed
by affixiing to the array name a subscript or index enclosed in brackets.

Arrays allocates a contiguous memory block. How many bytes to be allocate to a array it
depends upon data type and value of subscript.

e.g. intA[10]; '

It allocates 20 bytes to array A as 2-bytes for each element of type int.

Contiguous memory allocation allows us to generate address of any element of array. The array
name is a symbolic reference for the address to the first byte of the block of memory allocated for the
array. The address of the first byte for the array is known a base address of the array. Whenever we
use the arrays name, we refer to the first byte of

the array. The index represents an offset from the
beginning of the array to the element beina referenced

arrays? (PTU, Dec. 2006)

18 LO3D> Object Oriented pmg’amming

Q 50. If a and b are two arrays of same type, can the statement a = b, work?
| (PTU, Dec. 200g)
Ans. a & b are two arrays of same type.: . _
Name of array gives its base address i.e. address of first byte of array. So a gives base
address of array a and b gives base address of array b. So when we execute.
a=b; f arra /a nd '
this statement will assign base address of array b to base address O y a and we will lost
previous values of array a. Hence, this statement is not acceptable. e
Q 51. How is structure passed to a function? ' . (PTU, Dec. 200
Ans. A structure can be passed to the function in following ways - '
1. Individual members can be passed as an argument to a function by bothy value and call by
address, just as simple variables. ¢ :
2. The whole structure can be passed as an argument by value and the function can use the
~local copy of the structure. ' .
3. The address of a structure can be passed as an argumént by rgference and _lhe function
can access the elements of the structure through indirection and indirect selection operator
(). |
Q 52. How is memory allocated to structure variables? (PTU, Dec. 2006)
Ans. A structure is collection of data items of different data types. These data items occpy
contiguous memory locations. How many bytes to be allocated to a structure depends upon the data

items included in a structure. Total memory or bytes to be allocated is the sum of memory required by
the data items included in structure.

e.d.
struct student
{
int roll no ;
charname [20];
_ chargrade; -
} .

The struct student will be allocated 23 bytes of contiguous memory as 2 bytes for integer
variable roll no, 20 bytes for name variable and one byte for character variable grade.

Q 53. What is null pointer? _ (PTU, Dec. 2006)

Ans. Sometimes a pointer points to address 0, which is called NULL. Such pointer is known as

NULL pointer e.g. this may happen that if the poir]ter variable is declared as global since global

variables are intialized to 0. Likewise, this can also happen for a local un-initialized pointer variable,

particularly for local static variables, they are also initialized to 0 when it happens, then the system
will display a message “Null painter assignment” on'termination of the program.

Q54. Can we write a [i] as i[a]? | (PTU, Dec. 2006)

Ans. Yes, we can write a[i] as i [a] a [i] points to it h element of a array and similarly i[a], is also

points to ith elemient of a array. So writing a [i] and i [a] are the ‘same things i.e. their meaning and
purpose is same. _

Q 55._Explain various control statements used in C++ language in short

Ans. Following are the control statements - ' (PTU, May 2006)

Switc hj Break: It is always used Inside the body of the switch statement and looping statements. In

; it is used as the Ie:st_ statement of the statement block of every case except the last one.

19
When executed it transfers the control out of switch statement . In for, while and do-while, itis always
used in conjunction with if statement.

transfers the control to the beginning of the next iteration of
which are not yet executed. Butitis usedin conjunction with the if statemnt. Thus, continue statement
when exeuted terminates the current iteration of the loop.

3. Goto : Goto statement can transf
of the goto statement is marked by a la

// some statements
goto label ;

// some more statements
label :

// more statements.

4. Exit : Itis a library function and can be used to terminate program immatu rely when certain
conditions are met or not met and can cause the program to fail.

Q 56. What do you mean by the lifetime and scope of a variable?

Ans. Lifetime of a variable : Lifetime of a variable is the length of time it r
value. Lifetime of all storage classes are different.

Scope : Scope of visibility of a variable refers to those parts of a program that will be able to
recognize it. Scope of all storage classes is also different.

- Q57. What will be the result of execution of the following statements?

er the control to any part of the

program. The target destination
bel. The syntax for goto is '

(PTU, May 2006)
etains a particular

(PTU, May é_oos)
Ans.2*((8/5)+(4* (5-8)) % (8 +5-2))

2*(1+(42)% 11)
2*(1+8% 11)
2*(1+0)
2*'1=2
Q 58. In each of the following, assume that m has the value 5 and n has the value 2 before
the statement executes. Tell what the values of m and n will be after each of the following
statement execute : . "
() (m+n) (ii)—-m (ii)m<=n (iv)n-- (PTU, May 2006)
Ans.m=5n=2 ;
()-(m+n)==(5+2)=-7

(i) ——m=--5=4
(im<=n;5<=2;0
(ivVin-==2--=1

Q 59. How does an enum statement differ from type def statement?
| * (PTU, May 2006)
" Ans. enum : enum is used to define use-defined data type. In an enumerated data type, each
integer value is given an identifier called enumeration constant. To declare an enumerated data type.

We must declare its identifier and its values. Since enumerated data type is derived from integer data
type. Syntax is . ;

enum typename {identifier list} ;

The keyword enum is followed by an identifier which is followed by an identifier list enclosed in
a set of braces and terminated by semicolon.

20 LORDD Object Oriented Programming

type def : typedef gives a name to a data type by creating a new type that can pe useq
anywhere a type is permitted. The syntax is

typedef datatype identifier ; , | e
where datatype is either built-in data type or user defined data type and identifier, Usually 5
uppercase is the new name for the data type.
' (PTU, May 20g5,

Q 60. What is the purpose of return statement?
Ans. The return statement serves two purposes :)
1. Execution of return statement immediately transfers control from the function back to the
calling function. . ; .
2. Whatever is following the return statement is returned as a value to the calling function,
The syntax of return statement is
return;
or

return (exp) ; ' g , .
where exp can be a constant, variable or expression. Use of parentheses around exp is optiong|

The first form is used with functions defined with return type as‘void- |
The return statement need not be at the end of the function. It can be used any where in the

function. As soon as it is executed, the control will return to the calling function. A function can

contain any number of return statements.
Q 61. lllustrate the use of continue statements in ‘C++’. (PTU, Dec. 2004)
Ans. Continue is used when we want to go back to top of the loop-when something unexpected

happens. It is always used inside the body of looping statements. The continue statemer!t-transfers
the control to the begining of the loop of next iteration thus bypassing the statements which are not

vet executed. It is always used in conjunction with the if statement.

Ans, #fclude <iostream.h>
void main ()

e.g. for()
{
if (condition)
continue ;
} | ;

Q 62. Arrange in order of preference (highest first) the following kind of ‘C++’ operators.

| . (PTU, Dec. 2004)
Ans. C++ operators in order of their preference :

Category Operators
1. Unary operators o~ 44, == 4, = * &, sizé of
2. Arithmetic i %, +, - 'y
3. Shift <<, >>
4. Relational $S<EF;55= == | =
5. Bitwise &, A, |
6. Logical &4, 1|
7. Coditional T
8. Assignment = b= -
' TE = e (2 %= &= A | = - -
Q 63. Write a for loop that will ne ’ (ot oy
ver be executed, (PTU, Dec. 2005, 2004)

Introduction

inti;
: for (i=10;i <10 ; ++i)

}

return;

cout <«i ;

}

Q 64. When will you use user defined data type in C++?
| Ans. Enumerated data type i§ auser defingd d.ata type based on the standard integer data type.
nan enumerated data type, each integer value is given an identifier called enumeration constant

To declare an enumerated data type, we must declare its identifier and its values. Sin.ce

z;:tr::(zted data type is derived from integer data type, its operations are the same as for integers
|

(PTU, May 2004)

enum typename {identifier list} ;

e.g. enum Boolean {False, true};

Q 65. What are different ways of adding comments in C++ program?

Ans. Following are the different ways of adding comments :

1. C++ allows to add multiple comments in a program. This is done by starting the comment
with two characters ‘/*' and ending with the character /. Between these pair of characters, called
delimiters, any number of lines can be included, which may contain characters in lowercase as well as
uppercase.

2. Starting the comments with two successive slashes does the second style of adding comments
(‘7). This style of commenting is preferred if the comments comprise few words or a single line. ltcan
be used as a separate line or one the same line as that of an instruction.

Q 66. What is an expression? List various types of expression used in C++.

Ans. An expression is a formula for computing a value. It consists of a sequence of operands
and operators. The operands may contain function references, variables and constants. The operators
specify the action to be performed on the operands. In the following expression :

a*b.

Multiplication (*) is an operator and a and b are operands. There are four types of expressions
in C++ language. These are :

1. Arithmetic Expression

2. Relational Expression

3. Logical Expression

4. Conditional Expression. .
Each type of expression takes certain types of operands and uses a specific set of operators.

Evaluation of every expression produces a value of specific type. Expressions are not statements

but may be components of statements. |
Q 67. What are various data types supported by Turbo C++? Give memory requirement o

each type.
Ans. The various kinds of data types supported by C++ are :

1. Integer Numbers : Itis of three types : |
(i) short int : Small whole numbers and memory requirement is 2 bytes.

(ii) int : Medium whole numbers. Its requirement is also is 2 pytes.
(iii) long int : It stores large whole numbers. Its requirement is 4 bytes.

LO3DD Object Oriented programmm
g

22

2. Real Numbers : It is also of three types © .
(i) Float : It stores small real numbers. And its me
(ii) Double : It stores large real numbers. Its memo
(iii) Long double : It stores very large real numbers.
And its memory requirement is 10 bytes.

3. Character: - _ ‘
Char : It stores single character. Its memory requirement is 1 byte.

Q 68. Name and describe the usual purpose of three expression in a for statement,

Ans. The three expressions of for statement are : _

1. Initialization Expression : The initialization expression is executed only once, when the
loop first starts. It gives the loop variable an initial value. . _

2. The test expression : The test expression usually involves a relational operat.or. Itis evaluateq
each time through the loop. Just before the body of the loop is executed. It determines whether thg
loop will be executed again. If the test expression is true, the loop is executed one more time, If jts

false, the loop ends and control passes to the statements following the loop.
3. The increment expression : The increment expression changes the value of the loop variable,

often by incrementing it. It is always executed at the end of the loop, after the loop body has been

executed.
Q 69. What is the principle reason for passing arguments by reference? _

Ans. Passing arguments by reference uses a different mechanism. Instead of a value being
passed to the function, a reference to the original variable, in the calling program is passed.

The primary advantage of passing by reference is that the function can access the actual
variable in the calling program. Among other benefits this provides a mechanism for returning more
than one value from the function back to the calling program. -

Q 70. List various types of operators available in C++ and also give their precedence.

Ans. Following are the operators available in C++ according to their precedence.

mory requirement is 4 bytes.
ry requirement is 8 bytes.

Operators Precedence Level

_ ().[1 -, | 1
Unary I - ++, ==+, =, 4\

operators _ &, size of ' 2

Arithmetic %, +, - 3
Shift operators <<, >> 4 B
Relational | & <=5, 5,>= 5 N
. Equality ==, = 6 i
Bitwise & A 7 o
Logical &&, | | 8 =]
Conditional ? 9 =
Assignment St=, -2 /= Y= 10 =

- - &="=1= <<= 5=

Comma i =
' 11]

e

Q 71. What Is a variable? What are the rules for naming a varlable?

Ans. A variable provide us with hamed storage that can write to, retrieve and manipulat
throughout the program. Variables are memoty location in the computer memory that hold: d:t 5
Contents pl variable may vary hence the name variable. Variables hold different kind of data and tr?é
same variable might hold different values during the execution of a program.

iEach variabel is associated with a specific type, which determines the size and layout its
asgocaated memory. Variables in C++ can be declared anywhere in the program. By declaring the
variables nearer to its first usage and by limiting the scope of the variable to the block where it is to be
used, the programmer can economize the memory usage by the program.

Q 72. Describe the VO using get () and put () functions.

Ans. Get () : get () function reads one character, including white space characters, at a time
from the input stream. It is overloaded in istream and its prototype are as follows :

void get (char &) ; / it reads character into variable
It can be used with standard input stream object or with user defined object of istream class.
e.g.
charch;
ch=cin.get();
put () function : The put () function sends are character at a time to the output stream. Its
prototype is
void put (char) ;
It can be used with standard output stream object or with user defined object of the ostream

class.
“e.g. charch="A";
cout. put (ch) ;
displays the value of the character variable ch i.e. character A.
Q 73. What does nesting mean?
Ans. Statements can be nested i.e. an statement can be contained within another statement,
e.g. If statements can be nested i.e. an if statement can be contained within another if statement. The
inner if statement will be executed if the condition of the outer if statement evaluates to non-zero

value.
Q 74. What is difference between while and do-while statements?

Ans. While statement : The while statement is suited for problems where it is not known in
advance that how many times a statement or statement block will be executed. Its syntax is

while (expression)

{

statements

}
where expression is a constant, variable or an expression. The statements are executed til the

expression evaluates to non-zero value. Whenever expression evaluates to zero value, the execution

inate and controll will pass to a statement immediately following it.

of while statement will termi
do-while statement : The do-while statement, like while statement, is also suited for problems

where it is not known in advance that how many times a statement will be executed. Its syntax is

do {
statements

}

while (expression) ;

A MRV MITICNE Progr y
1V_Vhere exp. is constant, variable or an expression. —
r: f;a::'zri::[\;;::ock is execute_d repeatedly till the exp. evaluates to a non-zero value, By a
wnco"ttmaen ottheandc ement: do-while statement always executes once because in this, exp, s
Of loop and it is evaluated at the end when once statements of do-while are execu’ce:jS
::f :V:::C :‘l‘! Inllne. functions? How are they different from normal functions? .
N -f 'ction call myolves transter of control to a specified address and returning to the
ruction following the function call. Before transferring the control, CPU stores the contents of it
registers and thp address of the instruction following the function call. The time taken during tl:iS
whole process is called context switch time and constitutes an overhead in the execution of thS
program. 9
| This overhead is large if the time required to execute a function is small than the context Switch
time. Tht_a C++ language provides an alternative to above problem in the form of inline functions,
Inlcqe functions are those functions whose body is inserted in place of the function call during
the compilation process. Therefore, with inline functions, the program will not occur any Context-
switching overhead. An inline function definition is similar to an ordinary function except the keyworg
inkine preceedes the function definition.

Q 76. Which type of variables should be made register variables?

Ans. The compiler assign a register variable to one of the processor’s register instead of storing
it in the memory. Value stored in register can be accessed much faster than the value stored in
memory. So those variables on which the program spends most of its time to process them such as
index variables used of for loop. ‘

Q 77. How a structure is different from an array?

Ans. A structure permits the data items to be of different data types. These data items occupy
contiguous memory locations whereas array permits data items of same data type. They also occupy
contiguous memory locations. :

Q 78. What does nesting of structures mean?

Ans. There can be structures that contain other structures as its elements. This can be powerful
way to create complex data types. The only restriction on nesting of structures is that a structure
cannot contain a member that is itself a structure of the same type as the outer structure. e.q.

struct student '

{

int roll no ;

char name [20] ;

struct date

{
int day ;
int month ;
int year ;
date of birth ;

char class [5] ;
}i
Here student structure s acling as a nesting structure whereas structure date is acting as
nested structure. The data structure exists only in the scope of student structure.

PROGRAMS

Program : Program to enter temperature in degrees Fahrenheit, converts it to celsius.

#include <iostream.h>

void main ()

{
int ftemp ;
cout <<"Entertemperature in Fahrenheit" ;
cin >> ftemp ;

int ctemp = (temp — 32) * 5/9 ;
cout <<"celsius is" << ctemp ;

}

Program: Program to calculate factorial of a number.
#include <iostream.h>

void main ()

{
unsigned int no ;
unsigned long fact =1 ;
cout <<"Enter a number" ;

cin >>no ; -
for(intj=no;j=0;j--)
"faet ¥ =j ;

cout <<"Factorial is" << fact ;

}

Program : Program to print n fibonnacci numbers ;
#include <iostream.h>
void main ()
{
int next=0, last=1,n,i=0, sum
cout <<"Enter how many numbers to print" ;
cin>>n;
while (i<=n)
{ -
cout << last <<" \n";
sum = next + last ;

next = last ;
last = sum ;
i ++

}
}
Program : Program to check whether entered number is prime or not.
#include <iostream.h>
#include <process.h>
void main ()

{

longn,j;

cout <<"Enter a number" ;

cin>>n;
for (J =2, J <n/2; J++)
if (nN% J ==0)

{

cout <<'"Its not prime" ;
exit (0) ;
)
cout <<"lts prime" ;
er number.

}

Program : Program to find sum of digits of a positive integ

#include <iostream.h>
void main ()

{
int sum = O, digit ;
long no, temp ;
cout <<"Enter any number" ;
cin >> no ; ‘
temp=no ;-
while (temp > 0)
{
digit = temp % 10 ;
temp/=10;
sum + = digit ; ' “ 5
.
cout <<"Sum of digits" << no << "is";
cout <<sum ;

}

Program : Program to check whether the given number is palindrome or not

#include <iostream.h>
void main ()

{

int sum = 0, digit ;

int no, temp ;

cout <<"Enter any number" ;
cin >> no ; '
temp = nNoO ;

while (temp > 0)

. ‘

digit = temp % 10 ;

b oo Y a

cout <<no<< "is not a palindrome" ;

}

Program : Program to sort an array of integers using bubble sort.
#include <iostream.h>

#define size 100

void main ()

{
int a [size], i, n, k, temp ;
cout <<"enter size of array" ;
cin>>n:
if (n > size)

{

cout <<"size of array is more than declared" ;
exit (1) ;
}

cout <<"Enter elements of array" ;
for(i=0;i<n;i++)
cin >> a [i] ;
for(K=0;K<n-1;K+4+)
{
for(i=0;i<n—K-=1;i++)
{ ‘
if(afilj>ali+1])
{ .
temp=ali;
alil =ali+1];
ali+1]=temp;

}
}

cout << "Sorted array elements are" ;
for(i-0°i<:n'i++)
cout<<alij<"";
} .
Q79. How is register variable different form an automatic variable? (PTU, May 2009)
Ans. Register class : In register storage classes, the visibility and lifetime of the variable is
imited to the block in which it is declared. Compiler assign register variable to one of the processor’s
egister instead of storing it in the memory. Value stored in register can be accessed must be faster
han the value stored in memory. But there are limited number of registers in a processor, and not all
‘ariables can be register variables. Features of register are :
1. Stored in register, if a register is available. If no regjster is available, the variable is stored
in memory and works as if it is auto.
2. Local to the block in which the variable is declared.
3. If notinitialized in the declaration, their initial value is unperdictable.
4. It retains its value till the control remains in the block in which the variable is declared.

e.g. #include <iostream.h>
void main ()
{ :
registerint a ;
cout << "Enter any number " ;

cin >> a
cout <<"Number is" <<a;
} : ich is also th
Automatic variable : The variable declared with auto storagé class, which € storage
class by default, have following features : _
—SOfEk] Imamiy. tial value is undefined value or garbage

— If not initialized in the declaration statement, their ini
d within a function

value. | o _ ;
— Local to the block in which the variable is declared. If the variable is declare
e variable is declared. As the

then it is only visible to that function. _]
— It-retains its value till the control remains in the block in which th

execution of the black terminates, it is cleared/destroyed. -y
Q 80. What is a macro and how is it different from a preprocessor T (s 2009)
alent to expressions, complete

Ans. Macro : Macros are single identifiers that are ec.:[uiv. defined i
statements or group of statements. Macros resemble functions in thI‘S sense. Thefy are de Lneq inan
altogether difference manner than functions and they are treated differently during the compilation

process. Macro definitions are placed at the beginning of a file, ahead of the first Iunctiqn definition,
The scope of a macro definition extends from its point of definition to the end of the file. A macro

defined in one file is not recognized within another file. .
Multiple macros can be defined by placing a backward slash (\) at the end of each line except

the last. :

Preprocessor : The preprocessor is a collection of special statements, called directives, that
are executed at the beginning of the compilation process. The #include and #define statements are
preprocessor directives. Additional preprocessor directives are #if, #elif, #else, #endif, #ifdef, #ifndef,
#line and #undef. The preprocessor also includes.special operator like # and #i#.

Preprocessor directives usually appear at the beginning of a program though it is not a firm

requirement. They may appear anywhere in a program. _
Q 81. What is flow chart? How it is different from algorithm? Explain with the help of
(PTU Mav 2008)

syamble.

oots of quadratic equalloft -

[ntroduction
e.g. Write a algorithm and flowchart to find r
Algorithm :
of a, b and c.

step 1 : Input values

step 2 : Compute b? -
Step 3 : Is disC < 07 If yes
Step 4 : If disc > 0>7 If yes 't
Step 5 : Output "roots are rea

Step 6 : Goto step 10.
Step 7 : output "roots are imaginary.”

Step 8 : goto step 10.

Step 9 : output "roots are real and distinct".
Step 10 : Stop.

Flowchart:

4ac and denote its value disc.
then goto step 7 else goto step 4.

hen goto step 9 else goto step 5.
| and equal”.

Input Values
ofa,b&c

Compare
b2=4ac
with O

b2=4ac>0

b?=4ac<0

b%=4ac=0 - ‘

i .
Prjnt "rpots Print "roots Print "roots
are imaginary" are imaginary" are real & distinct"

:

Q 82. Explain in detail different operators in C++.

?":'_FO”UW."HQ are the different types of operators :
. Arithmetic operators : Different arithmetic operators supported by C++ are

(PTU, Dec. 2008 ; May 2008)

Symbol Operation Associativity
t Addition ' Left-to-right
: Subtraction Left-to-right
/ M‘ul.tiplication Left-to-right
o Division Left-to-right
Modulus Left-to-right

2. Relationa|
: Operators : T
ust be compatible i 8 : These operators are used t
e ity ocom
I order to facilitate decision making. These cp>la3ree t:]e L
. rators

30

e S

Associativity

3. Logical Operators : These operators are use
more conditions formed using relational operators.

Operation
less than
Less than or equal to
Greater than '
Greater than or equal to
Equal to
Not equal to

Left-to-right

dto form compound COnditiOns by iOining oo or

AssociativitY

Symbol Operation
! Logicat NOT _
& & Logical AND Left-to-Right
g Logical OR _ N
4. Bitwise : These operators o;gaerate at bit-level and allow us to n*;.an:upulate the individual bis,
Symbol Operation Associativity
= Shift-right
o= Shift-left .
N 1's complement L eft-to-right
& Bitwise AND
i Exclusive OR
| Inclusive OR
5. Special Operators : These operators are :
Symbol Operation
++ Increment
- Decrement
size of size of
& address of
¥ Indirection
?: Conditional
Scope resolution
Comma

Q 83. Write a program in C++ to multiply two matrices.

Ane #include<iostream.h>

(PTU, Dec. 20°

PRI R AT IR T WWPRBILNG, ., '

goto ab,

)

cout<<"\n Entor the elements of first matrix L
for(l=0;l<r1;i++)

for(j=0;j<c1;|++)

cin>>a[l](]];

cout<<"\n Enter the elements of second matrix:";
for(i=0;l<r2;i++)

for(j=0;j<c2;j++)

cin>>b[i](j];

for(i=0;i<r1;i++)

for(j=0;j<c2;j++)

{

cli](])=0,

for(k=0;k<r2;k++)
clillil=clillil+alil(k]*blk]Lil;

)

cout<<'\n The multiplication is:";
for(i=0;i<r2;i++)

{

cout<<"\n";

for(j=0;j<c2;j++)

cout<<c[i][j];

}

ab:

getch();

}

Q 84. Write a program in C++ to find the sum of first 100 natural numbers. |
' | (PTU, Dec. 2007)

Ans.
#include <iostream.h>

void main ()

{
inti,sum=0;
for(i=1;i<=100; ++i)

{
}

cout <<"Sum of first 100 natural numbers is" ;
cout <<sum ;

sum+=i;

} : .
Q 85. What is the role of switch statement in C++? - - (PTU, Dec. 2007)

Ans. The switch statement provides an alternative to else if construct. The switch statement
as more flexibility and clear format than else if construct. Its syntax is

Switch (expression)

case val-1 ;
statement-1
break :

case val-2 ;
statement -2
break ;

case val-n;
statement-n
break ;
default ;
statement-d
If e"KPIF}t-:'ssion takes any value from val-1, val-2 vakn, the control is transferred to tha
ropriate case.
s Fl)n each c:se, the statements are executed and then the break statement transilefstthe GanuG
out of switch statement. If no break statement is used following a case, except t??h aiazge '? thc‘
absence of default keyword. If any value of the expression does not matgh any :) e t values
control goes to the default keyword, which is usually at the end of the switch statement.
e.g.
#include <iostream.h>
void main ()
{
int day ;
cout <<"Enter day of week as member :";
cin >> day ;
switch (day)
{
case0;
' cout <<"Day is sunday" ;
break ;
case 1:
cout <<"Day is Monday" ;
break ;

case 2 :
cout <<"Day is Tuesday" ;

break ;

case3:
cout <<"Day is Wednesday" ;

break ;

case 4 .
cout <<"Day is Thrusday" :

Q 86. Exp]
Plain the Syntax of nested if stat

_ Ans. If statemen
The inner if statement
value. e.g.

eme i
ntin C4+4 with suitable examples

tedi.e. anif st
. atement can p . (PTU, Dec. 200
ted if the congiti N be contained within another)
ndition of the outer i statement evalu::z;ﬂt:tatement
non-zero

ts can be nes
will be execu

#include <iostream.h>
void main ()

int no ;

Cf:ut <<"Enter ariy no" :

cin >> no ; '

if (n>0)

{
F:out <<"no is positive" :
if (no %2 ==0)

cout <<"and even" ;

} .
}

. If you enter positive even number, then this program prints the message "No. is positive and
even”. But if you enter positive andl number, it prints the message "No is positive". However, if you
enter a negative number, the program prints nothing. :

Q 87. What is difference between library and user defined functions. (PTU, May 2007)
Ans. Many activities in C++ are carried out by library fuctions.Some functions are written and
incorporated into C++ language. Rather that each user write these subprorams, C++ compiler prr::yigle
these built library functions as a convenience. There are many Iibrgry functions that perform sgecmzed
functions and are defined in different header files. e.g. library functions that manipulate strings are
. : : i ' fined in math.h etc.
defined in string.h, that perform mathematical functnon:s are de .
User-defginad functions : User defined function is independent module that will be called to.do
i lled function receives control from calling function-when the called function
designated task. A ca’le i ion. It r.may not return a value to the
i k. it returns control to the calling function. It may or.may not 4
e i all the functions used in all application areas. However, it
calling function. C++ library cannot contain 8 '

' i . i i .
- a

ters. Using array of chara
An i are array of charac _
‘ . s;tm?(‘]scztl supported in C++ language, that is why we ret,hat %
Strings are not directly ' a variable length array of characters i
A string in C++ language f any character except the null character.

i use o _ e
(\0"). C++ does Pafm'f__t.r:?‘ T he format specifiers etc. in strings.

nd variables?
(PTU, May 2007)
cters, we can store string c.iata.
fer array of characters as strings.
elimited by null character
ommon to use

_ W B WEEE = —= = 'IMip
Normal character : For storing normal character we requiré only one storage location (4 ~b

where as even for storing one character string we require two storage location (1-byte each); g

character and one for the delimited. For normal character, C++ does not require delimiter p, , fgr

strings it sobers delimiter also. : ie\ |

Variable : Variable provide us with named storage that we can write 10 retrieve or manjp,

ory that holds data. Contems 0%

In CfthEF words, variables are memory locations in the computer mem : _
variable may vary. Variables hold different kind of data and the same varlat?le mlgh_t'hold differgy,
values during execution of a program. Each variable in C++ is associated with specific type, Whic

determines the size and layout its associated memory. For storing strings, we need to declarg 3

variable array of type character.
(PTU, Dec. 20
. 6)

Q 89. What is an array of characters? Where are they used?
Ans. Array of characters is actually a string variable using array of characters, we can Storg

string data strings are not directly supported in C++ language so we refer to array of character 5
strings. A string is C++ is a variable length array of characters that is delimited by null character (o),
Characters comprising a string are selected only from printable characters. C++ does permit the use
of any character except the null character. It is common to use formatting characters, such as tapg

format specifiers etc. in strings. '
When we want to store more than one character in a variable then we use array of characterg or

string e.q.

char str1 [] = "Hello" ; |
Here s + r1 is array of characters or string variable that stores “Hello”.

Q 90. What is structure? How can the structure be nested? (PTU, Dec. 2005)
Ans. A structure is a collection of different data items of different data types. These data items

occupy contiguous memory locations. Some variables can be int, some can be float and so on. The
data items in a structure are called the members of the structure syntax for declaring a structure is

struct student :

}i 6
The declaration starts with the keyword struct. '
The next element is tag that is identifier for the structure and list of variables or data items tobe
included and declaration conclude with semicolon after the closing brace.

e.g. struct student .

{ ;
int roll no ;
char name [20] ;
char grade ;

}i

This structure tag is student containing three data items, roll no of'integér type, name is strind

variable and grade of character type.

Nested structure : A structure can be nested i.e. there can also be structures that contain 0t®

structures as its elements. This is powerful way to create complex data types. The only restriction
nesting of structures is that a structure cannotcontain a member that is itself a structure of sameé typ?

as the outer structure.

e.g.
Struct Student

int roll no ;

char name [20] :
struct date

int day ;
int month
int year ;
} date of birth ;
char grade ;
}s
as nes';l:ﬁlztr::(:)t:ﬁuscttﬁ?? 'tl'lseagg?g ;fu?; e 9 (outer) structure, whereas structure date is acting

Ate ture don't have its independent existence,
e. Individual g|

- ements of a nested structure are accesse
outer structure variable name. : :
Q 91. What is void

it exists only in
d by referring to
*pointer? What is its use?
is used to hold address of o
generic pointers, Syntax is

(PTU, Dec. 2007, 2006)
perands of different data types at certain times.

size of the operand whose address is held in void pointer.

e.g. #include <iostream.h>
void main ()

void *ptr ;
inta=3;
floatb =5.3; ' . .
ptr = &a ;// assign address of integer variable
cout <<"Value pointed to void pointer is"
<< (*(int*) ptr) ; .
ptr = & b; // assign address of float vanable: “
cout <<"Value pointed to void pointer now is
<< (*float *) ptr) ;
}

In above example we declared void pointer and one integer variable a afnt:‘.ﬂoat yzrliablqnbé ‘
[' ' i d then display the value of this variable usi
Firstly, we assign the address of integer variable aan spla s Leing
pointzr and theg assigned floating variable b to pointer and again displayed the value of b using void
Pointer, _ . o .
Hence, void pointer is used to hold address of any type of variable at any time in program

Q 92, Write a program in c++ to find the maximum and secqnd largest nt(lsﬁfr[i): : g:::sr;
series of data.

}

}

int n, i, max1, max2, a [20].; "
cout <<"Enter length of series” ;
cin >> n,

cout <<"Enter series" ;
for(i=0;i<n; ++i)
cin>>a il ;

max = a [0] ; _
for(i=1;i<n; ++)

if (a [i] > max1)
max 1 = a[i] ;

max2=0;
for(i=0;i<n;++i)

if (a [i] < max 1 & & a [i] > max2)
max2 = a[i] ;

<<max2 ;

cout <<"Maximum no. is" << max1 <<" second largest"

Q 93. Explain ‘REGISTER’ storage class with some example.

Ans. In register storage classes, the visibility and lifetime of the varia
in which it is declared. Compiler assign register variable to one of the proce
storing it in the memory. Value stored in register can be accessed must fas
n memory. But there are limited number of re

‘egister variables. Features of register are :

1. Stored in register, if a register is available. If no re

in-memory and works as if it is auto.
2. Local to the block in which the variable is declared.
3. If not initialized in the declaration, their initial value is unpredictable.

4. ltretains its value till the control remains i
e.g. #include <iostream.h>

Q94. What s enumerated data t
. The enur__qeratgd datatypeis g user-defined data-

)

void main ()

}

register int a ;
cout << "Enter any number * ;
cin>> g

cout <<"Number is* <<a;

ype? Explain with

example.
type based on the stan

(PTU, Dec. 2005, 2004)
ble is limited to the block
ssor’s register instead of
ter than the value stored
gisters in a processor, and not all variables can be

gister is available, the variable is stored

n the block in which the variable is declared.

(PTU, Dec. 2005)
dard intﬂﬂﬂr vinh 14

js given an identifier called enumeration constant. We can use enumerated constants as symbolic
namBS.
To declare an enumerated data type, we must declare its identifier an

enumerated data type is derived from the integer data type, its operations are the same as for integers.
The syntax for declaring an enumerated data type is

enum typename {identifier list} ;
The keyword enum is followed by an identifier which is followed by an identifier list enclosed in

a set of braces, and finally terminated by semicolon. The identifier list contains enumeration identifiers

d its values. Since

separated by commas. \
Each enumeration identifier is assigned an integer value. If we do not explicity assign the

values, the compiler assign value 0 to the first enumeration identifier, value 1 to the second enumeration
identifier and so on until all of the enumeration identifier have a value.

e.g. enum color {RED, ORANGE, GREEN, BLUE};

the color type has four possible values, the range being 0-3 with the RED enumeration identifier
0 and ORANGE enumeration identifier representing the value 1, GREEN enumeration

representing value
dentifier representing the value 2 and finally the BLUE enumeration identifier representing the value 3.
Q 95. Write a program in C++ language to fit the maximum in a give series of data.
: (PTU, Dec. 2004)
Ans. #include <iostream.h>
void main () -
{

int a [20], i, max ;
cout <<"Enter series" ;
for(i=0;i<10; ++i)
cin >>a [i] ;
cout <<"Enter maximum no" ;
cin >> max;
i+ ;
a[i] = max
cout <<"series of no.'s is " ;
for (i=0;i<11; ++i)
cout << a[i] ;
getch () ;
}

Q 96. How will you replace a while loop statement with for loop statement?
' (PTU, May 2004)

Ans. The while loop looks like a simplified version of the for loop. It contains a test expression
but no initialization or increment expressions. Syntax of while loop is :
While (condition)

{

statement ,
statement ;

e |

As long as the condition is true, the loop continues to be executed

LO=<2> LDjECt Uriented ngramming

Where as for loop executes a section of code a fixed number of times. It contains Initialization

test expression and increment expression. Syntax of for loop is
for (initialization, test condition, increment/decrement)

{
statement ;
statement ;
)
.Example :

a while loop to be replaced by for. loop.
(i) Example of while loop.

main ()
{
inti=0;
while (i<=10)
{
cout <<i ;
i++;
}
} |
(ii) Above example replaced by for loop :
main ()
{
inti;

for(i=0;i<=10;i++)

{

cout < < i;

} 3
In example (i) variable i is initialized outside the while loop and condition is specified with while
loop and increment expression is written within the loop. Where as in for loop all the three initialization,

condition and increment are specified with the loop.
(PTU, Dec. 2009)

Q 97. What are user defined data types?
Ans. There are some derived data types that are defined by the user. These are :

Class, Structure, Union and Enumeration. These are explained as follows :

1. Class : A class represents a group of similar objects. To represent classes in C++, it offers a use!
defined data type called class. Once a class has been defined in C++, objects belonging to that class caf
easily be created. A class bears the same relationship to an object that a type does to a variable.

2. Structure : A structure is a collection of variables referenced under one name, providing ¢
~anventional means of keeping related information together. The following example creates a structuré

3. Union : A union is a memo

generally of different types at differen
union share {

inti;
charch;

}

union share cnvt :

4. Enurperation : An alternative method for naming integer constants is often more convient
that const. This can be achieved by creating enumeration using keyword enum. For example ;

enum {START, PAUSE, GOD};

defines three integer constants, called enumerators and assigns values to them.

Q 98. List and explain different data types used in C++. (PTU, May 2019 ; Dec. 2009)

Ans. Data types are means to identify the type of data and associated operations of handling it.
C++ data types are of two types : '

(i) Fundamental types

(ii) Derived types. :

There are five fundamental data types in C++ ; char, int, float, double and void that represent
character, integer, floating point, double floating-point and value less data respectively.

Derived types constructed from the fundamental types are : arrays, functions, pointers,
references, constants, classes, structures, unions and enumerations.

Fundamental Data Types: '

int : Integers are whole numbers such as 5, 39-1917, O etc. They have no fractional part.

Char : Characters can store any member of C++ implementations basic character set. If a
character from this set is stored in character variable, its value is equivalent to the integer code of that
character. An identifier declared as char becomes a character variable.

float : A number having fractional part is called a floating point number. Floating point numbers
have two advantages over integers. First, they can represent values between the integers. Second,
tbey can represent a much greater range of values.)

Derived Data Types :

1. Arrays : Arrays refer to the named list of finite number n of similar data elements. Arrays are
represented as below :

ARY [0], ARY [1], ARY [2], ARY [9]

Array can be one dimensional, two dimensional or multidimensional.

Ex : float a [3] ;

int b [2] [4] ;
2. Functions : A function is a named part of a program that can be invoked from other parts of
the program as often needed. :
Ex : #include <iostream.h>
#include <conio.h>
float cube (float) ;
int main ()
{clrscr ();
float num ;
count <<“Enter a number” ;
cin >> num ;
count <<"\n" <<“the cube of" <<num>> “is" ;

ry location thaft is shared by two or more different variables,
ttimes. Following declaration defines union :

cout <<cube (num) <<"\n" ;
return 0 ;

)
float cube (float a)

(return (a® a* a) ; |
l memory address. This address is usually the

3. Pointers : A pointers is a variable that holds a : :
location of another variable in memory. If one variable contains the address of another variable, the

first variable is said to point to the second.

Ex : type * ptr; ‘ : .
4. Reference : A reference is an alternative name for an object. A reference variable provide an

alias for a previously defined variable. T

The general form of declaring a reference variable is : type & refjvar = var=name ;

5. Constant : The keyword const can be added to the declaration of an object to make tha
object a constant rather than a variable. -

const type name = value ;
Q 99. What are arrays? Explain the concept of arrays with the help of a program.
- (PTU, May 2019 ; Dec. 2011
OR

lllustrate the concept of arrays with the help of a program. (PTU, Dec. 2009

Ans. An array is a collection of variables of same data type that are referenced by a commo
name. In C++ array consists of a contiguous memory locations. The lowest address corresponds t
the first element and the highest element corresponds to the last element.

/- Oth memory location

AlB|C]|D

O 71 2 B ssecessanssccakss: i

Ist memory location

Memory representation of arrays

Types of Arrays : Arrays are of different types :

(i) One-dimensional arrays (ii) Multidimensional arrays. :

(i) Single dimensional arrays : It consists of finite homogeneous elements type array narr
[size];

Example :

#include <iostream.h>

#include <conio.h>

int main ()
{

clrscr ();

const int size = 3;

float sales [size), avg = 0, tota| = 0;
for (inti=0;i<size;i++)

Introduction
“Enter sales made on day” <<i+1 << ™"]

{ cout<<
cin >> sales [i] ;
total + = sales [i] ;

}

avg = total/size ;
cout <<“\n Total sales = “<<totale<"\n" ;

cout <<"Average sales = “c<avg<<n’;

return 0 ;
] . - .
(i) Multidimensional arrays : C++ allows you to have arrays with dimensions more than.two.
The maximum limit of dimensions is compiler dependent. The general form of a multidimensional
array declaration is :

type name [a] [b] [c] ... [z] : . '
Two-dimensional arrays are also initialized in the same way as single-dimensional ones. For

example,

intcube [5][2] ={ 1,1
2, 8,
3, 27,
4, 64,
5, 125}
Example :
#define N3
#define N4

#include <iostream.h>
void main (void)
{inti, "
float a [N] [M] = {
{1, 2, 3, 4},
{5, 6,7, 8},
{9, 10, 11, 12}
¥ i
cout <<"contents of the array” <<endl ;
for(i=0;i<=N-=1; ++i)
for(j=0;j<=M=1; ++j)
cout << a [i] [j] <<\ ;
; cout <<endl ;

}
Q 100. Why is it necessary to include Header files in C++ Program?

Ans, l-!eaderl I‘jlgs contain declarations for various functions that are predefined in C
2 S e sl SRS In C+4+ Far

< LV P D T

=

ence of C4+ Operators from low greatest to lowest is as follows : |
S.No. Operator Description Associativity |
-—_1_‘.__,__ sl Scope Resolution operator Left-to-Right
2. —-——_Tx Paranthesis Gt
(1] Array subscript
. Member Selection via object name Left to Right
=5 Member seclection via pointer
+ + Unary Post increment
- - Unary Post dec rement
3. ++, - Unary Preincrement/Predecrement kA
ol Unary plus/minus Right to left
', & indirection and reference
4. (Type) Type Casting Left-to-Light
5. * 1,9 MultipIication/Division/ModuIus Left—to-Light
6. +, — Addition/Subtraction . Left to Right
7. <<, >> Bitwise Shift Left to Right
8. <, > <=, >= Relational Left to Right
9. ==,l= equality ' : Left to Right
10. & & logical AND Left to Right
1. [Logical OR Left to Right
12. ? Conditional Right to Left
13. =,"s,|=,%=—-= . Assignment Right to Left
14,) Comma Left to Right
Inthe above Table, Associativity de

fines the precedence orderin which operators are evaluated
in the case that there are several operators of the same level in an expression.

Q 103. What is the difference betwen syntax and semantics of alanguage?

Ans. Syntax : It refers to the ways symbols may be combined to create well

language. Syntax defines the formal relations between the constituents of a language, th

sions that make up legal strings in the la

ymbols in a language withoyt any consi
their meaning.

Semantics : It reveals the meaning of s ; . .
languages, this means correlating sentences and phrages with the objects, thoughts and feelings of
our experiences. For programming languages, semantics describes the behaviour that a computer
follows when executing a program in the language.

~formed in the
ereby providing
nguage. Syntax
deration given to

yntactically valid strings in a language. For natural

Introduction 43

Q 104. What is a user defined data type?

Ans. The user defined data type enables a programmer to invent his/her own data type and
define what values it can take on. This can help more listings more readable, in the case of a complicated
program or when more than one programmer works on it. Thus this data type can help a programmer
reduce programming errors.

Q 105. What is a pre-incremental and post-incremental operators?

Ans. A post-incremental operator is one in which value is used first and then incremented
whereas a pre-increment is one in which value is first incremented and then assigned.

inti, j, k; inti, j, k;

= 10: i=10;

=2 i=2

k=j+ (i ++); k=j+ (++);
cout <<k<<i; _ cout<<k<<i:
The output is : The output is :
k=12. . k=13

i=11 e - | '
i ++ is post incremented

++ i is pre incremented

Q 106. What is application of scope resolution operator in C++?

Ans. Scope resolution operatoris (: :). It is used to specify functions outside the class. We can
just declare function inside the class and then definition of the function can be defined outside the
class using the scope resolution operator.

e.g.: void abc: : xyz (abc x, abc y)

}

Here abc is a function of xyz class.

Q 107. How elements in an array are stored in memory?

Ans. The declaration ' '

int a[10] ; -

Declares an array, named a, consisting of ten elements, each of type int. Simply speaking, an
array in a variable that can hold more than one value.

You specify which of the several values you're referring to at any given time by using a numeric
subscript. We can represent the array a above with a picture like

a.

o] | (11 | 2 [(3] [4] 5] (6] [7] 8] | [9]

Here the ten elements of a 10-elements ar?jare numbered from 0 to 9 and are stored seqentially.
The subscript which specifies a single element’of an array is simply an integer expression in square
brackets. ‘ .

~Q108. What do you mean by operand and operators? (PTU, Dec. 2011, 2009)
Ans. Operand : Operand on which operation is applied. :

Operator : Operator which specifies what operation is done on operands
e.g. 2x2+3x=5 '

2 ;
Here 2x2, 3x and é are operands and +sign and —sign is operator.

- ""'llilng
o - - __—_-—__—_-—“—h‘
o e oo AE Structure of C++ program with following points
(a) Built in functions

(b) Symbolic statements

(¢) Special operators

(d) Various data types.

Ans. (a) Built in Function : There are certain set of general Purpose operation which are quite
frequently used by many programmers in their program. For example the SqQuare root of Number. 1,
calculate power of a number and many more. Making functions for performing these Operations iy,
every program is an unnecessary and time consuming job. So there general purpose Operation grq
Programmed and stored in C++ library so that they can be called through any Program in the form of
function. These functions are called in Built Functions. There are number of library functions availab|g
in C4+.

e.g. Program to find square root of number

#include <iostream.h>

#include <math.h>

int main ()

v {
intn, x:
cout << “Enter any number” :
cin>>n;
X =sqrt (n) ;
cout <<“Square roat of” << x :
getch () ; '
returnO;

shown in the following example :
#define P1 3.14

It replaces every occurrence of symbolic constant p| with a value 3.14 before the program is
compiled. The main advantage of using itis that to ¢

- . hange the value of Symbolic constant PI, it needs
o be modified only once in #define directive,

#include <math.h>

void main ()

{
double number, answer: //specia| co
cout <<*Enter number” » // double d
in >> number :

answer = sqrt (nurnber) y/sqrt is built in function

mma operator
ata type

cout << “Square root” << answer ;
answer = Pl *number* number ;

cout << “Area is” << answer ;
getch () ;

}

Q 110. What is the difference between an algorithm and a flowchart? (PTU, May 2012)

Ans. 1. Algorithm is a sequence of instructions used to solve a particular problem. Flowchart
s a tool to document and represents the algorithm.

2. An algorithm can be represented using flowchart but flowchart can't.
3. Flowchart is a graphical representation of algorithm.

Q 111. Write a program in C++ to find whether a number is prime or not?

(PTU, Dec. 2011)
Ans. #include <iostream.h>

#include <process.h>

void main ()

{

long n (j) ;

cout <<"Enter a number” ;

Cin>>n;

for(j=2,)<n/2;j++)

if (N%j = = 0)

{ g

cout <<“its not prime” ;

exit (0) ;

}

cout <<“its prime” ;

}

Q 112. Distinguish between static members and not-static variables? How are they useful?

‘ | . (PTU, May 2018, 2014)

Ans. Class members can be declared using the storage class specifier static in the class
member list. Only one copy of the static member is shared by all objects of a class in a program.
When you declare an object of a class having a static member, the static member is not part of the
class object. | _

A typical use of static members is for recording data common to all objects of a class. For
example, you can use a static data member as a counter to store the n_umber of objects of a particular
class type that are created. Each time a new object is created, this static data member can be
incremented to keep track of the total no. of objects. You access a static member by qualifying the
class name using the :: (scope resolution) operator.

A static member belongs to a class where as a non-static member belongs to an object of a
class. This means that a static member can be called by a class and by the object of the class,
whereas a non-static member can be called only by the object of the class. A static member can
access only other static members of a class, where as a non-static members can access both static
and non-static member of a class.

- There is only one copy of a static variable and its value remains the same even when the class

is instantiated, whereas in case of non-static variables, every time the class is instantiated, the
objects have their own copy of these variables.

e

Q 114. How is the operator keyword used? (PTU, Dec. 2013)
Ans. The keyword operator is used to overload the ++ operator in this declarator
void operator ++ ()
The return type (void in this case) comes first, followed by the keyword operator, followed by the
operator itself (++), and finally the argument list enclosed in parenthesis (which are empty here).
This declaration syntax tells the compiler to call this member function whenever the ++ operator
is encountered, provided the operand (the variable operated on by the ++) is of type counter.

Q 115. What is meant by classes within the class? How can we declare a class and
object? Explain with help of example.

Ans. From the classes within the class we mean inheritance. In C++, classes are reused via
the concept of inheritance. When a new class is created by inheriting an existing class, the new class
becomes a derived class of existing one. The existing class is the base class of the new class. The
derived class can define additional data and methods. If the base class has a method that the derived
class wants to change, it can do it.

Class is blueprint for an object. A class is an expanded concept of a data structure : instead of
holding only data, it can hold both data and functions.

An object is a bundle of variables and related methods. An object is an instantiation of a class.
In terms of variables, a class would be the type, and an object would be the variable.

Classes are generally declared using the keyword class, with the following format :

class class_name

access_specifier_1:
memberl;
access_specifier_2:
memberz;

} .object_names;

Where class_name is a valid identifier for the class, object_names is an optional list of names
for objects of this class. The body of the declaration can contain members, that can be either data or
function declarations, and optionally access specifiers.

For example : - .

Class Student

{

int age;

char name[20];
float per,;
average();

}

When class is bind Objects and methods then it is called as encapsulation.
Q 116. What are the rules for static data members?

Ans. Rules for static data members are as follow :

1. They can be public as well as private.

2 Thev areinitialized in a special manner 1f volt faraat $m imiimlie o sl - s

- """”lllg
——*_\\

getch ();
return O;

) .
Q 121, Write a program to pass and return object from the function.

Ans. #include <iostream>
class complex
{
private:
int real;
int imag;
public;
complex () : real (0), img (0); { }
void read Data () '

Cout <<"Enter real and imaginary number respectively:” <<endl;
Cin >> real >> imag;
Complex and complex Number (Complex Comp2)
{
Complex temp;
temp. real = real + comp2. real:
temp. imag = imag + comp2. imag;
return temp;
}
void display Data ()
{
cout <<“Sum =" <<real<<“+” <<image<<"i":
}
:
int main ()
{
Complex C1, C2, C3;
C1.readData ();
C2.readData ();
C3 = C1. add complex Numbers (C2)
(C3.display Data ();
return O;
}
Q 122. How the ob]oc;. are assigned using C++ ? _
Ans. If a temporary object is created on the right hand side of the expression, the standard

constructor for that object is called 1o initialize the tempora iec :
. , object, nt
operator is called on the object being assianed to with mf.mﬂﬂ_-{ . _then the copy assignme

.
]

g B

~ static
—extern. : -
O Auto : The auto storage class i§ the default storage class for all local variables.
{inta
auto int b;
} _
auto can only be used within functions i.e. local variables.
O Register : The register storageé _lass is used to define local variables that should be stored
in a register instead of RAM. '
{ register int a;
} iy
The register should only be used for variables that require quick access such as counters.
O Static : The static storage class instructs the compiler to keep a local variable in existence
during the life time of the program instead of creating and destroying it each time. It comes into and
out of scope. Therefore, making local variables static allows them to maintain their values
between function cells. | ; - |
O Extern : The extern storage class is used to give a reference of a global variables that is
visible to all the program files. When you usé ‘extern’, the variable cannot be initialized as all it does.
It point the variable name at a storage location that has been previously defined.
Q 124. Write a program to get character input from the user and store those characters in
a file.. : : (PTU, May 2018)
Ans. #include <stdio.h>
int main (void)
{FILE, *fptr;
char ch;
fptr = fopen (“unsername.txt,”, “w");
printf (“Enter your name”); '
While ((ch = getchar()) ! = n’) {
putc (ch, fptr); -
}
fclose (fptr);
fopen (“username. txt”, “r");
printf (“\n file content:\n");
While ((ch = get c((fptr))! = EOF)
)
printf (“%C", ch);
}
printf (“\n End of file \n");
fclose (fptr);
return O;
)

Q 125. What are the different ways in which we i
Programming? Explain each with the help of an exar:::;ha“ R g_)rlsclt:)()riente
; , Dec. 201

Ans. There are various ways of achievi '

: ng abstraction in obj : :

Ce++.0ne h in object oriented program

approach is to take modular based code that is broken apart into srr?allgr seg:,:';?_llzneua!
y KNO\

as functions. This functi
is functional or modular approach helps the code to be reused again and again wh

n be cr eate

objects ¢
ntify the member

cess the

s. Youide

two-step proces
r operator (.)toac

array of objects is @
add the membe

Accessing member datd in an
of the array bY using the index operator_([)2 and then you

particular member variable.
Like :
int x[10]; // array of 10 integer data types
rray of 12 float data types
child c(6); // array of 5 child class objects
#includeciostream.h;-

class CHILD

{
public : :
CHILD() { itsAge = 1; itsWeight = 5; }

;-CHILD(){}
int GetAge() const { return itsAge; }

. s Gtu n ilSW .g .

Inpod> ——m
int i;
for(i=0; i<5;i++)
suhani[i].SetAgB(E*iH)
for(i=0; i<5: i++)

{

cout <<"Chil
cout <<suhani[i].GetAge(

}

}
Q 127. Why princi

to avoid it?
Ans.Substitution principle : Every

to use a derived class object instead.
For example, consider this code :
Question MyQuestion;
le, we should

Question bonus = MyQuestion; :
The second line creates bonus as a copy of MyQuestion. By the substitution princip
question which is derived from the Question class instead:

be able to make MyQuestion a short-answer

ShortAnswer sa,

Question bonus = $&; _
There are problem of slicing. So what happen when weé say Questi
a Itinvokes the copy constructor of Question

O We have sliced off things specific 10 ShortAnswer.
slicing : The loss of information that occur when putting 2 derive

class variable.
Avoiding Slicing :
O Using base-class pointers

Q Virtual methods :
Q 128. Differentiate between encapsulation and Abstraction. (PTU, May 2015)

. Ans. Abs.trac!iap . Abstraction allows us to represent complex real world in simplest manner.
t is process of identifying the relevant qualities and behaviours an object should possess in oth
word represent theﬂnecessary feature without representing the background details. ' °
ol E:capsulatlon : Itis a process of hiding all the internal details of an object from the outside
world. The word Encgpsulatlon like enclosing into the capsule. It restrict client from seeing its

f the abstraction is implemented.
n? (PTU, May 2015

2 129(.5What do you mean by garbage collectio

ns. Garbage collection is the systematic recovery of

. pooled computer stor i i

sed by a program when that program no longer needs the storage. Thus free the s?c:ﬁz;z:iLL:SuzelE!
eb

other programs (or processes with in a program). It
a . It also ensures that a TeoR .
ngnn:gt:n?;nﬁgzg;‘zargzndo:]s cr;ot reach its quota. Garbage collectionp:so ?—:lr: Zu':grl":gtilg g
NET framework, Langua asytha? ern programming languages such as Java and langua o i
machine like the J\INE'Il Ir? each czse garbage collection are often intérpreted or r Quagns
. se, the environment that runs the code is a!stn ;N e e
esponsible f

d #" <<i+1<<
y<<endl;

at are the different ways
(PTU, Dec. 2014)

where a basé class objectis expected, you should be able

ple of substitution cause slicing problem? Wh

on bonus = $a;

d-class value into a base-

garbage collection.
Q 130. Differentiate between meta class and abstract class
' (PTU, May 201

Ans. Meta class : The meta '
- S8 class is often descri ‘
s assion, but can b explained as follo\:vzefj as the ‘class of a class’ which may see

-

lass, as we know holds the attributes and methods which will apply'tq objgcts of the
class.mz tief;ass of objects. The meta class holds the attributes and methods which will apply to
the class itself therefore It is the class of the class. Every class has one metaclass and the metaclass
contains those parts of a class which are not appropriate to be duplicated for every specific object.
Abstract class : An abstract class is a class for which one or more methods are declared but
not defined meaning that the compiler knows these methogsdare part of the class, but not what code
to execute for that method. These are called abstract methods. _
Q 131. What do you mean by Precedence and Associativity ? (PTU, May 2015)
Ans. The C++ language includes all C operators and adds several new operators. Oggrators
specify an evaluation to be performed on one or more operands. Operator precedence _Spemﬁes't_he
order of operations in expressions that contain more than one operator. Operator BSSOCIfﬁIVﬂy Specme:s
whether, in an expression that contains multiple operators with the same precedence ; an operand is
grouped with the one on its left or the one on its right. :
Q 132. Name various (at least four) standard classes of C ++.
Ans. The following are the various standard classes of C ++
(a) <array>
(b) <bi/set>
(c) <memory>
(d) <string>
(e) <istream>
(f) <ostream>
(g) <iomanip>
Q 133. Differentiate between the term Abstract class and container class.
| (PTU, May 2015)

(PTU, May 2015)

Ans. Abstract class and container class : |

Abstract class : An abstract class is a class for which one or more methods are declared but
not defined meaning that the compiler knows these methods are part of the class, but not what code
to execute for that methods. These are called abstract methods. ‘ _

Container class : Container class is a class which can hold objects of other clases. These
classes are very helpful in managing resources required by the application. There is a rich collection
of container classes supported by most of the modern C++ compiler in the form of standard Template
library (STL). The STL not only contains container classes but also set of functions that can manipulate
these container classes. ' \

Q 134. What do you mean by the term Data type ? (PTU, May 2015)

Ans. Data type : A data type in a programing language is a set of data with values have
predefined characteristics. Examples of datatypes are : Integer, floating point unit number, character,
string and pointer. Usually, a limited number of such datatypes come built into a language. The

language usually specifies the range of values for a given data types, h
by the computer and how they are stored. ypes, how the values are processed

Q 135. Explain the declaration, accessing and usa i i
, v ge of static data tatic
member functions with the help of suitable examples. men(]:ﬁas Da:: 2(?1 I5)

Ans. Static data members : Static data members are data objects that are common to all the

objects of a class. They exist only once in all obi |
the finite object of the respective cl all objects of this class. They are already created before

ass, T i LR : :
sotsssibis he static members are used in information that is commonly

The main advantage of using a stati

updated while the program lives in the me C member is to declare the global data which should be

mory,

== wia Vbject Oriented Programming

pt of abstraction and are defined as g list

Q 137. Draw flow chart to find the largest of three numbers (PTU, May 2615)
Ans. .
Start
A
Input a,b,¢

C is largest

ais largest

b is largest

Q138. What are the various input statements of C++ ? (PTU, May 2016)
Ans. When the Computer gets the data from the keyboard, the user is said to be acting

interactively. Putting data into variables using cin and the operator >>. The syntax of cin together with
>> s :

Cin >> variable;
If two variables then

Cin >> variable1 >> variable 2:
This is called input statement. |
€g. int feet;

int inches -
then input is cin >> feet >> inches;
Q 139. Write a class to represent a vector

functions to perform the following tasks.

(a) To create the vector
(b) To modify the value of a given element
(¢) To multiply by a scalar value
(d) To display the vector in the form (10, 20, 30,)
Write a program to test your class. (PTU, May 2016)
Ans. #include<iostream.h> ' 3

#include<conio.h> '

int const size = 50;

class vector

{

float d [size);

int s;

public;

void create (void);

void modify (void);

void multiply (void):

void display (void);

)

N C++, >> is called the stream extraction operator

(a series of float values). Include member

void vector:: create (void)
{

cout <"\n\n Enter size of array you want to create™

cin >> S;

cout <<"Enter” <<S<<"Realnumbers\n”;

For (inti=0;i<S ;i++)

cin >> d [i];

}

Void vector :: modify (void)

{

int mfy_value;

float with;

cout <<"\n Enter location of array at which value is to be modified”;
cin >> mfy_value;

Cout << “Enter value with which you want to replace”;

cin >> with;

d [mfy_value] = with;

} _
void vector :: mutiply (void)

{

int mul; .
Cout <<*\n Enter value with which you want to mutiply:”;
Cin >> mul ; :

for (inti=0;i<S; i+ +)

dfil=d[i]* null; .

} _

void vector :: display (void)

({:OUt <<"“\n\nDisplay of Array \n";

cout <<"(7;

for (inti=0;i<S;i++)

{Cout <<d [il;

lf(it=8-1)

cout << "}

}

cout <<)";

Void main ()
{

clrscr ().
Vector ol ;
int choice;
do

{

Cout <<"/n/n Choice list /n";
cout <<"1) To creale vector Array \n";

%W AFeFf Lt T T T rv:’lu||||||||||:J

cout <<"“2) To modify array \n";
cout <<“3) To multiply with scalar values \n";
cout <<“4) To Display\n”;

cout <<"5) Exit \n”;

cout << “Enter your choice ”;
cin >> Choice;

switch (choice)

{

Case 1: ol. create ();

break;

Case 2 : ol. modify ();

break;

Case 3 : ol. multiply.();

break;

Case 4 : ol. display ();

break;

Case 5 : goto end;

}

} While (1);

end; }

Q 140. What is the difference between high level and a low level language ?

(PTU, Dec. 2016)

Ans.
Basis High Level Low level

. Learning 1. Easyto learn 1. Difficult to learn

. Execution 2. Progres are slow in execution - | 2. Programs are fast in execution

. Modification 3. Programs are easy to modify 3. Programs are difficult to modify

. Facility at 4. Do not provide much facility at | 4. Provide facility to write programs
hardware level hardware level at hardware level

. Uses 5. Normally used to write 5. Normally used to write hardware

application programs. programs. |

pp—

{ ‘
Hanoi (m -1, a, ¢, b); :

Cout <<“Move disc”’<<m<<"from”<<a<<"t0”"<<C<<end|;

Hanoi (m-1, b, a, c);

}

}

int main ()

{

int discs;

cout <<“enter the number of discs”<<endl;

cin >>discs; :

Hanoi (discs, ‘A’, ‘B’, ‘'C’); _

Cout <<"It took” <<moves<<"moves,"<<endl;

system (“Pause”);

}

Q 142. Describe the following manipulators :

(a) Setw() (b) Setiosflags ~ (c) Setprecision

(d) Setfill () . (e) Resetiosflags () : (PTU, Dec. 2016)

Ans. (a) Setw () : The setw () stands for the set width. It sets the number of characters to be
used as the field width for the next insertion operation. The setw() manipulator is used to specify the
minimum number of character positions on the output field a variable will consume.

(b) Setiosflags : The setiosflags manipulator function is used to control different input and
output settings. The I/O 'stream maintains a collection of flag bits. '

(c) Setprecision : The setprecision () is used to control the number of digits of an output

stream display of a floating point value.
(d) Setfill () : The setfill () manipulator function is used to specify a different character to fill the

unused field width of the value.
(e) Resetiosflags () : The resetiosflags manipulator performs the same function as that of the
resetios function. All those flags which are set by the setiosflags manipulator are reset by this function.
Q 143. What is the value of the following expression ? ,
(H(4-4% 3) <5 & & (6/4 > 3))) ' (PTU, May 2017)
Ans. =(1(3<5&&1>3))
= (! (True & & False))
= (False)
= True. :
Q 144. What is meant by membership operator in C++ ? (PTU, May 2017)
Ans. The membership operator is used to access the member of structure variable or class
Obs'ej? through the pointer. It is common to dynamically allocate structure, so this operator is commonly
Used, - 7
Membership operators are . & —. .
Q 145. What is a nested class ? What are its advantages ? How is it defined and declared
InC+ 2 2k | (PTU, May 2017)
Ans. A nested class is a class which is declared in another enclosing class. A nested class is
A member and as such has the same access rights as any other member. The members of an

:gcolgzing class have no special access to members of a nested class; the usual access rules shall
yed. . .

i |

Advantages of nested class :

O The purpose of nested class is to hide the nested class name inside another class, restricting
access to that name. '

Q' Itdoes not give either the outer class or the nested class any special privileges to accegg

protected or private members of either class. '
U A nested class does not allow the outer class access to its hidden members. The name of

the nested class is hidden.
Declaration and Definition of nested class
#include <iostream.h> .
class Nest
{
public :
class Display
{
private :
int s;
public :
void sum (int a, int b)
{S=a+b;}
void show ()

{ .

cout <<*“/n The sum of a and b is” <<S ; 3
A

4

void main ()

{

Nest : : Display X;

X.Sum (12, 10);

X. show ();

(PTU, May 2019

}
. Call by value.] _
2;94§r:eacall]t;y value method of passing arguments to a function copies the actual value of a

' ion. In this case, changes mode to the paramete
nto the formal parameter of the function , ‘
:'lrsgig‘:.?:; Ifumtion have no effect on the argument. By default, C++ uses call by value of pas

arguments. (BTl Mav 2018

y

Chapter

 Contents |

Constructors, Destructors, friend functions, Parameterized constructors, Static data members,
Functions, Arrays of objects, Pointers to objects, this pointer, and reference parameter, Dynamic

allocation of objects, Copyconstructors, Operator overloading using friend functions,
overloading.

N

2

Classes & Objects - Il

AR ®BAER

FRERERE 7B

38R R

(S 4
L= o
= o

POINTS TO REMEMBER @_’]

Constructors and destructors are member functions that perform the automatic initialization and
clean up for the objects.

Constructors can be overloaded whereas destructors cannot be overioaded
A constructor can have default argument.

If a class has at least one parameterized constructors, it will be programmer's duty to provide
the zero argument constructor in the class. .
Constructor and descrutors have same names as that of class.

A copy constructor is a special constructor that is used to create an object from an existing

object. If there is no copy constructor in the class, compiler provide default copy constructor.
Const data members can only be initialized through initializer list.

Pointers are memory addresses variable i.e. the variable, Wthh have addresses of the variable
having some value, stored in the memory.

Pointers is a variable having address of another varlable and not the value.

Point increases the execution speed of the C++ programming.

The address of the memory variable can be accessed by using address operator (&).

The pointer variable or memory address always has integer data which is also unsigned.
Comparing two pointers that do not refer to value of same array will generate logical error.
Scale factor is a scale or measurement of the length of the cell addresses of the different data
types. ‘

A pointer that does not point to any data ObjECt is known as null pointer.

In C++, the null pointer can be represented by the constant 0.

The pointer pointing to object are referred to as object pointer.

A string array has memory space allocated only at the time of execution. No memory allocation
is done at the time of declaration. This is call dynamic memory allocation.

To allocate memory dynamically for structure variable, we use new memory allocation operator.
A dynamic structure can be released using the memory deallocation operators delete.

When accessing member of a class using an object pointer, the arrow (—) operator is used
instead of the dot operator (.)

61

LO3D> Object Oriented ngraml'hin
9

i ber of an object.
i ccess the public mem_ b
Object pomters' are,_,l:jiiddt;: member can be obtained through an obje also th'?th .
The address ofa p
object pointer.
Free store is a pool of memo

“This' is a pointer to the curren

ﬁéﬂg

bjects during the program execution
t object. It is passed implicitly to an O\wer:I_u:nad‘:_:cilc.,;,e”:‘t or fung
' i ing this pointer.
i nt is passgd using .
ded function, the second argreementis : pelitee. .

:;Ioti:?e?\trg r:z:nter is just another way of writing mul!s dimensional array of p 10 objegs,
Pointer to pointers are also known as nesting of pointer. e
Nesting of pointers contains the address of the second pointes 1.e. abls g

contains the value desired. .
Class is a group of similar object. _
i i i tion together.
A class in C++ binds data and associated func _
While declaring a class, four attributes are declared : data member function, program acces

ry used to storage for o
tion,

LRRER B

§ R0

level and class tag name. _ _ _ .
The public member of a class can be accessed outside the class directly by using object of s

)

class type. .
The private and protected members can be accessed within the class by the member functigng

g

only. _ .
The functions defined inside the class definition are automatically inline.

A class definition can occur within the definition of another class. In such cases, the inner class
is called the nested class and the outer class is known as the enclosing class.
A class support the OOP feature of encapsulation by binding data and associated functign

§ 3§

5

together.
A class supports abstraction by providing only the essential information to the outside world,

A class supports data hiding through private and protected members.

The object can be passed to as well as returned from function.
An object is an instance of class. A class is a logical abstraction, but an object has physical

RN

existence.
Each class member can be of a specific access specifier. Access specifier allowed in C++are

: private, public and protected.
The scope resolution operator (: :) links a class name with a member name in order to tell the
compiler what class the member belong to.
Like a structure a class can have data member as well as member functions.
Default access for a structure is public whereas for a class it is private. :
Data members are non static by default. However member can be declared as static.
A plass can be defined inside another class. Such class is called nested class.
A class can also be defined inside a function. Such class is called local class.
An abstract class is class from which no object can be created.
A class that can hold objects of another class (es) is known as container class.
Operator overlgading makes the uses defined data types behave like built in data types.
. E;z:;t:r RS b overload an operator. Which can be member function of fre

B

g

BEABREBER B

at atleast one operand of i
o Perand of uses defined data type.
verioad operator follow the syntax rules ofthe original operator. They canngt be overidde™

§Rg

Classes & Objects - IT 63
= In postfix overloading of increment and
type int. '
Possible type conversions are from basic type of class type, class type to basic type and class
type to class type.
Class type to basic type conversion can be performed by defining conversion function in the
source class.
Class type to class type conversion can be performed by defining conversion function in the
source class or through one argument constructor that takes an object of the source class, in
the destination class.

decrement operator, the additional argument should be of

=

=

QUESTIONS-ANSWERS

Q1. What is destructor? (PTU, Dec. 2011, 2008 ; May 2019, 2004)
Ans. Like a special member function constructor is called automatically when an object is
created first. There is another function is called automatically when an object is destroyed. Such a
function is called destructor, A destructor has the same name as the constructor but preceded by a

tilde.

Like constructors, destructors do not have a return type. They also take no arguments the most
common use of destructor is to de-allocate memory that was allocated for the objects by the constructor.

Q 2. Discuss custom new and delete operators. (PTU, Dec. 2007)

Ans. New operator : The new operator allocates the memory and always return a pointer to an
appropriate type. The new operator is defined as
- type " new type [size'in integer]
e.g. int*ptr;

ptr = new int [50] ;

It allocates a memory block of 100 byts, 2 bytes for one integer value, total of 50 integers.

The new operator also permits the initialization of memory locations during allocation. The
syntax for doing so is

type * ptrvar = new type [intial value] ;

delete operator : The delete operator is opposite of new operator and it deallocates memory
allocated by new operator back to the free poll.of memory. The syntax is
delete ptrvar ; .
Where ptrvar can be simple pointer variable or the name of

class type.
If ptrvar is an array of pointers to objects, then we have to use delete operator as

delete ptrvar []; or delete [] ptr var ;
The second form is used when we want to deallocate more than one array with single use of

delete operator.
Q 3. What do you mean by default constructor? (PTU, Dec. 2007)
Ans. In case no constructor is defined by the programmer for a class, then compiler automatically
inserts one constructor in the class definition prior to compiling the class. The constructor has following

structure.

the array of pointerto all typs except

class name () { }
This constructor takes no arguments and does nothing as it carries no statements. In this case

garbage values will be assigned to the object.
Default constructor is used to invoke when an object is created with no arguments.

‘ LO3ID) Object Oriented Prugramming
64 .

PTU, May 2
mory leak? . o (» May 2007
Q4. V’:‘;;:{':y T:ak ia?; serious problem with pointers. It is a situation W!‘IEI’E the pmgrﬂmmei
i A:r;ase the memory allocated at run time in a module. When memory is allocated, a Pointer
fai = L‘:ar is used to hold the address of the allocated block, however, when the module completeg its
va;:uﬁon the pointer variable goes out of scope and there will be no way to reach that memory blogy.
:;ereiorel care must be taken to release the allocated memory block in a module where memory wag
allocated. ' ;
Q 5. Explain inline function, constructor and destructor. (PTU, May 2019, 2009)
OR
Write short note on Inline functions. : . .
Ans. Inline functions are those functions whose body is inserted in
during the compilation process. Therefore, with inline functions, the program
switching overhead.) . o
The inline funtions are best used for small and frequently used functions. An inline function
definition is similar to an ordinary function except the keyword inline precedes the function definition,
e.g. inlineinta (int b).

{
}

A constructoris a special member function whose task is to initial
it is created. It is special in the sense that it has a name that is s
constructor is' automatically invoked when an object of its associated
constructor because it constructs object with its initial state by assigning values to it data members,
A constructor is a member function whose name is same as that of the class. A constructor is

declared and defined in the same manner as other member functions. Itis placed in the public section
of the class. _ . :

e.g.

(PTU, Dec. 2011, 2005)
place of the functiop cal|
will notincur any Context.

return b*b ;

ize an object of a class when
ame as that of its class, A
class is created. It is called

Class student
{.
private ;
int roll no ;
char nane [25] ;
int age ;
public :
student ()
{
rollno =100 ;
strcpy (name, "ABC") ;
age=15; -
}
; /I other member functions
student std ;

Destructors : A destructor, as its n
felease the resource held by the object befo

also the same name as that of class but is preceded by character tiled (~).

ame implies is a special member function that is used 10
re the object is destroyed. Like a constructors the destructor

Classes & Objects - I1

65
e.g. class sample
{
private ;
I data members
public : .
~ sample ()
!l statments for the destructor
; /I other member functions

A destructor is a member function whose name iss
with character tilde ‘~’. Destructor takes

as other member functions. It is plac
itself or outside the class.

Q 6. What are the various ty
examples.

Ans. Cc_m_strucior : Constructor is special member function whose task to initialize an object of
aclass when it is created. Following are the types of constructors used with the classes :

1. Zero argument constructor : Ittakes no arguments. Itis used to initialize every object with
same initial values.

e.g. Class A
{

ame as that of the class but is preceeded
No arguments. It is declared and defined in the same manner
ed in the public section of the class. It can be defined in the class

Pes of constructors used with the classes? Explain with-

private : -
intno ;
float at ;
public :
A ()// zero argument constructor

{
}

/f other member functions

no=1,al1=5.0;

}i
2. Parameterized Constructor : When it is required to initialize the data members of different
objects with different values when they are created. Then we use parametrized constructor.

e.g. Class A
X
private :
int no ;
fioat al ;
public :
A (int a, float b) // parameterized constructor
{
no=a,
al=b;
}

LO3DD Object Oriented Prograrnming
66

// other functions

3. Coi}:ir Constructor : A constructor can accept a reference to its ?thglraiscis"; : E:r:z?e‘er.
A constructor that accepts a reference to its own class is called copy constructor. uctor
is used to initialize an object from another objects of same class. e.g.

Class A
{
private :
int no ;
float a1 ;
public : .
A (A & obj) // copy construcftor
{
no = obj. nd ;
al=obj. al;
}
/f other member functions
b ;

4. Overloaded Constructor : C++ permits to use default constructor, zero argument or copy
constructor in a same class. The constructor is actually used in initializing an object depends on the
way the object is declared.

- e.g. ClassA{
private ;
intno ;
float a1 ;
public :

A(); // zero argument constructor
{

no=3;
al=5.0;
}
A (int a, float b)
{ z
no=a;
} al=b;
A (A & obj)
{

// parameterized constructor _

/I copy constructor

no = obj. no;
al=obj. a1 ;

}

ki
5. Constructor with default ar
arguments must be trailing ones.
| eg.

// other member functions
guments : Constructor can have default arguments. But default

Class A {

Y.l
T .

Classes & Objects - I1

private ;
intno;
float at ;

public :

A (int a, float b = 3.0)
{

67

l parameterized constructor with default argumnt

no=a;
al=b;
}
/lother functions)
¥
Q7. What are the characteristics of constructor?
Ans. Characteristics of Constructor :
1. Aconstructor function is as
name as that class.

An object constructor is called when the object is created.
Constructor does not return any value, not even void.
No return type should be mentioned with constructor.

A constructor for a class is needed so that the compiler automatically initializes an object
as soon as it is created.

6. If there is no constructor in a class, the compiler creates a default constructor, but it does
not initialize fundamental type variables.

Q 8. Explain the use of copy constructor with an example.
Ans. Copy constructor: T

(PTU, May 2019, 2010)

pecial function that is a member of the class and has the same

SENES

(PTU, May 2010)
he parameters of a constructor can be of any type except an object

e.g.
Class number
{
private :
int real ;
float imagine ;
public :
number (number & n)
{
real = n. real ;
image = n.image ;
}
// other member functions
};
A copy constructor is used to declare and initialize an object from
Q 9. What do you mean by parametrized constructors?
«Ans. Parameterized Constructor : When itis required to initialize the data
Objects with different values when they are created.

another object of its class.

(PTU, Dec. 201 0)
members of different
Then we use Parametrized constructor, e.q.

LO3D> Object Oriented Programming

68
Class A

Private ;
intno;
\:lr;at a1;// parameterized constructor
Public
A (int a, float b)
no=a,
al-b;

// other functions
:2.10. What is friend function? Explain the features of friend function. Also give an eXample
for friend function. (PTU, May 2019)
Ans. Friend function : The function that are declared with the keyword friend are known as
friend functions. A function can be declared as a friend in any number of classes, it has full accesg
rights to the private members of the class.
Features of friend function :
1. It can be invoked like a normal function, with the help of the object.
2. It has the object as arguments.
3. Itis not in the scope of the class to which is has been declared has friend.
Example of friend function :
#include <iostream.h>
#include <conio.h>
class real ;
class integer

private
inta;
public
integer () /I constructor
{
a=0;.
}

integer (int i) // constructor ’
a=i;

void get ()

cout <<end / <<“Enter the value ;" <<end /:
cin>>a:

void show ()

cout <<end 1 <<‘a="<<a;

error,

Classes & Objects - II

—‘_'_‘—\—_._____
}
5 Friend real adqg (integeri, real i
class read
{
private
floatb ;
public
real ()
b= 0.0 i
}
void get ()
{
cout <<end / << “Enter the value "
cin>>b;
}
void show ()
{
Cout <<end /<< “b="<<p .
} ;
friend real add (integer i, real j) ;
|
void main ()
{
integer X ;
realy, z;
x.get();
y.get();
z=add (x,y);
z.show () ;
}
real add (integer i, real j)
(:
real K ;
Kb=ia+jb;
retumn K ;
}

Q 11. What are the rules for static data members?
Ans. Rules for static data members are as follow :

1. They can be public as well as private.

3. Statlc ‘members share the same memory for all i
Member belongs to a class as a whole and not to its specif

2. They areinitialized in a special manner. If you forget to initialize them, you will get a compilation

nstance of the class, that is, a static
C instances.

LO3D> Object Oriented Programming

& (PTU, May 2017,
d function? T, May 2014
G 4 Wikt s 8 00 declared with the keyword friend are known as friend functiong_ A

jon that are . - :
functi ?;:',,T;I:;:Zﬁaﬂrad as a friend in any number of classes, it has full access rights to the Private
unctiol

members of the class. ’ . .
Q 13. What are the special characteristics of friend function?

Ans. 1. It can be invoked like a normal function, with the help of the object.

2. It has the object as arguments. .
3. It is not in the scope of the class to which is has been declared has friend.

Q 14. What do you mean by friend class? _
Ans. Declaration of friend is not restricted to method only. You can declare one class as frigng

of other. For example ;
class ABC { //some data members

// some member functions:
friend XYZ ;

)
In this declaration class XYZ is declared as a friend of class ABC. It implies that XYZ can ysg

all of data members and member functions in its definition.
Q 15. What do you mean by static class members? Explain the characteristics of statjc

class member with suitable example.

Ans. Static class member : Static class member variables are used commonly by the entire
class. It store value. No different copies of a static variable are made for each object. It is shared by
all the objects. It is just like the C static variable.

Characteristics of static class member : .

1. On the creation of the first object of the class a static variable is always initialized by zero.

2. All the objects share the single copy of a static variable.
3. The scope is only within the class but its lifetime is through out the program.
For example :
~ #include <iostream.h>
using namespace std ;
class num
{
static int ¢ ;
intn;
public :
void-getd (int x)

void getc (void)
{
cout <<"cout : “<<c<< “\n”;
Wi
intnum::c;
int main ()

Classes & Objects - IT ;
71

num 01, 02, 03
01.getc ();
02.getc () ;
03.getc () ;
01.getd (1);
02.getd (2) ;
03.getd (3) ;
cout <<"After reading data” <<\ -
01.getc () : '
02.getc () ;
08.getc ();
returnQ ;
} .
~Q16. What is pointer?
Ans. Pointers are memory address j i i i
e havihg-sams i, oot t:nse\r':glgble I.e. the variables, which have addresses of the
A pointer contains a memory address, fu ' i
] » further we can say, pointers are di link
;—.sscs:uryp;z:re:g. Actu_ally pointer is available having address of another variabler:cngyn:t‘ tl:g ::u::h:
€ q Is an integer variable and thi i i i in
e 4ot Lacalinie ol his variable has value 440. This value will be stored in
Variable name Variable-value Memory address
q 440 5000
Q 17. Explain any fives uses of pointers.
Ans. (i) A pointer enables th i ichi i i i
I e variable, which is used outside the function or used in the another
{u) Poi_nler increases the execution speed of the G4+ programming.
(f") P0|.nter reduces the length and complexity of the program.
?\.;) lI:‘cnnters are more efficient in handling the data table i.e. two-dimensional arrays
v) Use of the pointers to th i -
- o] o the character array or to the string saves the storage space in the
(vi) Pointer gives accurate resuit.
Q 18. What do you mean by dynamic meaning allocation?
Ans. A string array has memory space allocated only at the ti i
Ans . me of execution.
allocatl_on is done at the time of declaration. This is called dynamic allocation of memoryNEI,‘:‘e handmg
dynamic allocation of memory, two operators are used. These are new and delete operatc'w The new
Operator can be used to create dynamic structurei.e. the structure for which the is dynami
allocated. e W"Mv
The general syntax used for this purpose isas :
struct_pointer = new struct_type ;
Q 19. Write a program to implement new and delete operator.
Ans. Program to implement new and delete operator.

#include <iostream.h>
#include <conio.h>
class abe

{

< $§ memory-variable (pointer)

private ;

LO3D) Object Oriented Programming
. o

72
int roll no ;
float fees ;

public :

void read (int r, float f)

rolilno=r;
fees=f;

void display (void)

cout <<"Roll No is” <<roll no ;
cout <<\n fees PAID is” <<fees ;

}

void main ()
{

clrscr () ;

class abc *p ;

p =new abc ;

p = read (20, 1200.32) ;

p = display ();

getch () ;
}

Q 20. What do you mean by free store?

Ans, Free store is a pool of memory available for you to allocate storage for object during the
execution of your program. The new and delete operators are used to allocate and deallocate free
store, respectively. You can define your own versions of new and delete for a class by overloading
them. You can declare the new and delete operators with additional parameters. When new and delete
operate on class. Objects, the class member operator functions new and delete are called if they have
beendeclared.

If you create a class object with the new operator one of the operator functions operator new () or
operator new[] () is called to create the object. An operator new () or operator new [1()foraclass
is always a static class member, even if it is not declared with the keyword static.

Q 21. Explain array of pointers to an object through an example. (PTU, May 2010)
_ Ans. Two dimensional array can be taken as array of pointer. Here every element can hold
address of any variable and every element of this array is a pointer variable. It contains the collection

of addresses.

e.g. int * a [2] [5]

the above array can be represented in terms of pointer as :

int * a[5] ;

The "a [5] is an array of three pointers. The subscript 5 represents the row of the array rather
than the column as in the case of pointer to a group of arrays. Precedence of array bracket [] is highef
than the indirection operator *. Hence int *a[5] can be represented as (int*) (a[5]).

Q 22. What are the uses of ‘This’ pointer? _

Ans. 1. “This” pointer is used when an object that generates the cell from the member fynction
is returned. ' '

Classes & Objects - 11

2. When the name of arguments in
is used to remove so generateq ambigui

Q 23.:\!.A.P 1o pointer to pointer

Ans. Program to implement poi é

. o i

#include <iostream.hs PRSI Raar,

#include <conio.hs>

void main (void)

73

member function are same as of data members. This pointer

intat, *P1, * pp .
clrser () ; ’
a=20;
P1=28&a;
P2=&P1 4

cout <<:‘The value of A is stored at address” <<P1 -
cout <<"\n Address of P1 is stored at address” <<P2;

;Z;‘:;:;‘\.n The value of A usin_g pointer to pointer is” <<**P2 :

}

Q 24. Write a program to show relationship of pointer to object.
Aps. Program to show relationship of pointer to object ‘
#include <iostream.h>

#include <conio.h>

class abc
{
public :
inta;
p=8&x;
p=a&y;

It means void can handle any data-type easily.

:} 25. What is ‘This’ pointer? Explain with example.

Ans. When you define a class, then member functions are creal i
memory _only once i.e. only one copy of the member function is created f:d?tnlds zttg::dsl;.;ﬁl ::?f?h‘a
class pbjems. Only space for data member is allocated separately for each object. So to shar:
member function, a problem occurs i.e. if only one instance of a member function exists, how does it
Ccfme to know which object's data member is to be mainpulated. To solve this problern'we can us
this pointer. This pointer is a special pointer which points to the object that invokes member iuru::[it::me
When a member function is called, it automatically pass an implicit (in-built) argument thatis a pointe-
to the object that invoke the function i.e. when a member function is called, the compiler automaticall :
assigns the address of the object to this pointer and then the member funt;tion is called. For exa 2
below is the program, which illustrate the concept of this pointer. l BN

Program to implement ‘This' operator.

#include <iostream.h>

#include <string.h>

#include <conio.h>

class abc
'

B L P—
-

LO3ID> Object Oriented Programm;ng Classes & Objects - II
75

74
char nm [20] : *
: A*ap=newB;
ﬂo:}j:e”s ' : delete ap;
sy getch () ;
abc (char ™s, float f) y
{ i
G e Q 27. Write shortn
t nm' : Ote (] i .
:t:gg;: gnm, s]): n Dynamic mem&;y management. (PTU, Dec.2011)
{ Discuss the
fees = f; concept of mem " .
. memory management with the he|p°of :’sz?l:agement in C++. Explain the concept of dynamic
abc (inti) - Ans. Many programs have little neec; f s S (PTU, Dec. 2009)
() memory. C++ code is naturally organized b Tr DIEIENY Ttk thes s 5 e Aot of
a=i: member operator new for individual claSSesY class, a common response to this failure is to overload
Detailed knowled :
} _ : ge of the memory usa, it
s applied by tuning memory usage for a?-; hmegerzatterns of individual classes can be helpful, it is best
void main () organize memory management onal program or major subsystem. In C++, the only way to
o To Eelick i Fnatwry e alarger scale than the class is by overloading the global operator
b clrser () ; reference to a class which impler?-n?af:tesn-t it require to adding a placement argument, in this case a
class abc m1 (20) ; 3:-‘(:1‘:: :gd 'Oflere;toanew (size t, class heap &) ;
class abc* p; - . . overload the operator new in this w o z
p=&mi; // P is an object pointer to object m1 policy Sf its own, and we like to tune to it as well ay, the regular operator new is implementing a
. . ynamic Memory Management : i :
int *q, tr; - . i lbietared Tor o Vanbl gemen tln a_lll programs, we have only as much memory available as
=&mil. a riables, having the size . :
q ; // q pointer to a : 9 of all of them to be determined
N ;) before the execution of the program. But if we need : rmined in the source code,
=&p : a 3 / r pointer to a dstsmiivad dunron Smss b a va_anable amount of memory that can only be
cout <<a =" << m1.a; : et ot e need some user input to determine the necessary amount of
cout << “*q" << *q; l?:ofder : or this tC;-+ integrates new and delete operators.
il ‘ request dynamic memory we use th ‘
;g;.ghcf)“lr” <<™r; specifier and if a sequence of more than g‘le elefneent?sc:'zzzjai:::i?ﬁ: ;'15:\“;5:5 ﬁf)!tl‘?;ved ot
: : L% r of these within b
} (1.1t rit;li:\nts a pomte;r to the begining of the new block of memory allocated. lts form is .I s
. _ er =new type C ’
2"256.;\&:: a ;:raghramt rt::) zhrc:w the befagalyiour of delete operator. pointer = new type [number of elements]

. Program to show the behaviour of delete operator : The first statement is.used to i : e
#include <iostream.h> _ ; second one is used to assigna bloctk o?ILT::::nEeoT;r:etc:vii?;a:;eane sl;:gle =l v
#fnclude <conio.h> : ; . value representing the amount of these. eg : ' humbardt slemente ls animegar
#include <new.h> ; int * abe :
s_t;uctlA { N abc = new int [5] ;
virtual ~ A\ { cout <<“~A ()" <,end /; }; In this case, the system dynamicall i i

i _ : ’ i % _) y assign space for five elements of type int and re
void ope:alor deléte (void *P) { pointer to the first element of the sequence, which is assigned to abe. Thereiorg [:bc points tot:r:asﬂz
cout << “A : : operator delete” << end /; block of memory wit_h space for five elements of type int.
delete (P_) ; Q 28. Explain the use of implicit this pointer with example. (PTU, Dec. 2013)
struct B: A{ Ans. The implicit this pointer : Each object declared has its own copy of data m:amb 5. B
void operator delete (void *P note th i f each i i .
y K e that there is only one copy of each class member function available for all the class objects
cout <<"B : : operator delete” << end /; Each member function has a pointer which holds the address of the object itself. And it is called the
delete (P) ; : this pointer. This pointer is & special pointer which points to the object that invokes member function
} . Whena rpember .function is calleq. it .automallcally passan impiicit (in-built) argument that is a pointer
b to the object that invoke the function .e. when a member function is called, the compiler automatically
int main () { ElS.SlgnS.th aqd(ess c_:f the ob!ecl to this pointer and then the member function is called. Then this
pointer is a built-in pointer. This pointer points to the object being processed. That is, using the this

cirser () ;

LO3D> Object Oriented Programming

76

pointer

v ter is also used to access the data members of the object. The this pointer can g
The this poin

dinary pointerto an object. Since it is a pointer to an arrow operator (—) is useq
treated just like an or

ecifier. This pointer is more useful in returning values from member functu:u-.s
ess sp . .
as member acc

overloaded operators.
= The following program illustrates
object. I
#include<iostream.h>
class number
{
private : int x; .
public : void setvalue (int d)

{ - .
this —> x = d; //this pointer

i i d ess Of the claSS ol ect or t
be ul ction ca n -

the use of this pointer in accessing the data members of an

} -

Void display (void)

{ i .
cout<<“x = “<<this —> x -f<endl:' _
cout<<"Address of the object = "<<this;

}; //End of class definition
void main()

{

number n1,n2; //n1 and n2 are two objects
nl.setvalue(30);

n2.setvalue(80);

n1.display();

n2.display();

} //Ends of main()

Q 29. Discuss pointers related problem with examples. (PTU, Dec. 2017)
Ans. Two of the major problems that plague C++ programmers are memory l_eaks and men:pry
corruption. A memory leak occurs when memory is allocated but never freed. Thls_causes was r:zg
memory and eventually leads to a potentially fatal out of rnemc_a_ry. A memory corruption occur:f:"ing
the program writes data to the wrong memory location, overwriting the data that was there, an
to update the intended location of memory. Both of these problems falls squarely on the pointer.

Q 30. What are the rules of operator overloading?

Ans. Rules for operator overloading : .

1. Only the operators which are part of the C++ language can be overloaded. No new operator
>an be created using operator overloading.

2. You can change the meaning of the operator i.e. a+ operator can be overloaded to perform
nultiplication operation or >> can be overloaded to perform addition operation.

3. Any overloaded operator function must have at least one operand which is user defined type-:
Ul of the operands cannot be of basic

ome class.

type if this is the case then function must be friend function of

Classes & Objects - IT

77

4. In case of overioading binary operators left hand side operator must be an object of class
when overloaded operator function js g member function of the class.

5. Binary operators overioadeg through member function of the class take one argument and
overloaded through friend function take two arguments,

6. Many operator overloaded through member function of the class does not take any argument
and overloaded through friend function must take are argument.

7.:54% 71, size of these Operator cannot be overloaded.

8.= —>, [1, () these operator cannot be overloaded using friend function.
Q 31. What is friend function? '

Ans. A friend function is used for
allow non-member functions and othe
friends. Thus, a friend function is ano

(PTU, Dec. 2011)
accessing the non-public members of a class. A class can
r classes to access its own private data, by making their
rdinary function or a member of another class.

Q 32. Which operators cannot be overloaded? (PTU, Dec. 2010)
Ans. There are five Operators which can't be overloaded. They are ;
1. .*~ Class member access operator.

2. ::-Itscope resolution Operator.

3. .—dot operator

4. ?::-Conditional operator

5. Size of () - Operator.

a unary operator x is called with a statement xt,

where t is an object of type T.
A non-static member function that overloads this operator would have the following form :
return_type operator x () :

A non-member function that overload
return_type operator x (T).

When you write overloaded operator functions, it can be useful to implement separate versions
for the prefix and postfix versions of these operators. To distinguish between the two

s the same operator would have the following forn :

operator for the postfix form of the increment or decrement operator the additional argument must be
of type int ; specifying any other type generates an error.
A unary éxpression conitains one operand and a unary o

Same precedence and have right-to-left associativity. A un
expression.

Q 34. What is meant by operator overloading? Explain the operation of overloading of an
assignment operator. (PTU, May 2009)

Ans, Operator Overloading : Itis important feature of QOP using operators in different ways,
depending on what they are operating on s called polymorphism. When an existing operator, such as
*+0r =, is given the capability to operate on a new data type, it is said to be overloaded, overloaded is
Kind of polymorphism.)

Assignment operator overloading : Assignment operators can be overloaded in a same as

arithmetic or unary operators. Let us look at example of overloading of arithmetic assignment for.
#include <iostream.h> operal

perator. All unary operators have the
ary expression is therefore a postfix

LO3D> Object Oriented Progran-“-.-,i,.Ig

78
class dist

private ;
intf;
float in ;
public ;
dist ()

{
f=0,in=0.0;}
void get dist ()

{ H " .
cout <<"Enter feet and inches" ;

cin>>f>>in;

void show dist ()

{

}
void operator + = (dist d2)

{

cout << f << "-" << in;

f+=d2.f;
in+=d2.in;
if (in>=12.0)
{
in—=12.0:
f++;

}
15
void main ()
{
dist obj1, obj2 ;
obj1. getdist () ;
cout <<"dist 1 ="
obj1. show dist () ;
obj2. getdist () ;
cout <<"dist 2" ;
obj2. get dist () ;
objt1 + = obj2 ;
cout <<"After addition dist 1" ;
dist 1. show dist () ;
1
Q 35. Discuss operator overloading in C++.
OR
‘What is operator overloading? Explain binary Operator overloading.

(PTU, Dec. 2007)

_ g (PTU, Dec. 2006)
Ans. Operator overioading is one of the exiting features of C++. Operator overloading faciltates

Classes & Objects - I - 79

se of most of i I I 2
't:euttlfoutput arith.-;he?igpoer:uops Permissible on user-defined data types. These operations include
In'lganings to’an Sheniiia ispkr:a“%n:' Comparisons and assignment. The mechanism of giving new
i Ownaso i i 3
6 Sy Cart b i, Perator overloading. Semantics of an operator can be extended

To give an additi i '
L, w% e ional _mean|r_19 to an operator, we must specify what it means in relation to the
class € operator is applied. The syntax for overloading is
;eturmype Operator op (arglist)

N funciton body
}

where op is the Operator being overl isti i arguments for the operator
oaded
: ‘ ed and argllst is the list of g

: nction is either non-static i i i
process of overloading involves the following steps : IR T e

« G i i
1 reate a class that defines a data type that is to be used for overloading an operator.

2. Declare the operator function op (arglist) i i
fretion S P (arglist) in the public part of the class. It can be member

:ca). Def_ins_.- the operator function to implement the required operation.
.nly existing operators can be overloaded. New operators cannot be created.

#include <iostream.h>
class distance
{
private :
int feet ; _
float inches :
public :
distance ()

feet=0;
inches = 0.0 ; y
distance (int ft, float in)
{
feet =t ;
inches = in ;
}
void getdist ()

‘cout <<"Enter feet" ;
cin <<feet ;

cout <<"Enter inches" :
cin >> inches ;

LO3D> Object Oriented Programming
=

80
void showdist ()

cout <<feet <<"=" <<inches ;

c}jistance operator + (distance) ;

iﬁ;stance distance : : operator + (distance d2)
int f = feet + d2. feet ;
float i = inches + d2. inches ;
if (i > = 12.0)

i-3=12.0;
f++;

return distance (f, i) ; |
_ }
void main ()

{
distance dist1, dist3, dist 4;

dist1. getdist () ;
distance dist2 (11, 5.5) ;
dist 3=dist 1 + dist 2 ;
dist 4 = dist 1 + dist 2 + dist 3 ;
cout <<"dist 1" ;

dist 1 . show dist () ;
cout <<"dist 2" ;

dist 2. show dist () ;
cout <<"dist 3" ;

dist 3. showdist () ;
cout <<"dist 4" ;

dist 4. show dist () ;

}

The above example shows the overloading of binary operator ‘+' using the member function
operator. _
Q 36. What is the function overloading? Explain the concept of constructor overloading.
Can a template function be overloaded? (PTU, May 2006)
Ans. Function overloading : A function can be overloaded. An overloaded function appearst®
erform different activities depending on the kind of data sent to it. In C++, it is possible to use the
same function name to perform identical operation. Such functions are called overloaded function
ind the process of defining such functions is called function overloading. The overloaded functo
nust differ in argument list either different number of arguments, or different in data types of arguments
r they may differ both in number and type of arguments.
e.g. voidno();
void no (int) ;
void no (int, char) ;

Classes & Objects - IT
81

These three functions has itfer i
Constructor bverloadings?ni:: ?: i b N eadosad T

niiictoé sl diffiai nctions constructors can be overloaded. The overloaded
o N number of arguments it required. And which of the constructor is executed

w . S
e.g. classno{ ‘many arguments are used in definition.

private :
intn, m;
public :
no()
{:
n=1;
m=2;
no (int p, int q)
{
N=p;
m=q;
} -
/1 other member functions

)
?bove class no contains two constructors with different argument list
emglatefur!chon : A template function can be.overloaded eiherbym;ﬁ'\erterrphmfum&:nor

Template overloading is also different in number and arguments
e.g. template <class T> NPR -

void display (T arguments) {
: cout <<"Value of arg" << argument :

void display (float argument) {
cout <<"value of arg "<<argument :
} ‘ ’

In above example display template is overloaded with different argument list.

Q37. Write a program to overload the +, -, x, % operator to addition
multiplication and division of Complex numbe'rs: ni SOt

Ans. #include<iostream.h> (PTU, May 2014)

#include<conio.h>

class complex

{

float x,y;

public:

complex() {}

complex (float real, float img)

{

X = real, y = img;

complex operator+(complex);

LO3ID> Object Oriented Pro'gramming

82
= lex);
complex operator {comp '
complex operator‘{complex),
void operator/(complex);
void display()
{
cout<<x<<"+" <<y<<
}
K
complex complex:_:operatom(c
{ :
complex temp;
temp.x = X+C.X; -

“i"<<endl;

omplex c)

temp.y = y+C.y,
return(temp);
} A

complex complex::operator—(complex d)

{

complex temp;
temp.x=x—d.x;
temp.y=y—d.y;
return(temp);

}

complex complex::operator*(complex e)

{ :
complex temp;

temp.x = x*e.x+y*e.y*(—1);
_temp.y = x*e.y+y*e.x;

return(temp);

}

void complex::operator/(complex f)

{

complex temp;

temp.x = X".x+y*(-f.y)*(-1);
temp.y = x*(-f.y)+y*f.x;

Classes & Objects - 11
83

C3.display();
coutcc“Subtraction"«endl'
C4.display(); I
cout«“Mult‘tplication"«en

. d i
C5.display(); .
cout<<"Division”<<endl:
ci/cz; .
getch ();
}

Q 38. Differenti ;
. nhtiate between frieng function and member function with the help of an

example.
(PTU, Dec. 2011)

Ans. Friend function : Frj ‘
nction : Friend function aliows to Operate an object of two different classes

Function will take objects of two classes as arguments and operate on their private data

e.g. #include <iostream.hs
Class B ;
Class A ;
{
Private :
intno ;
public
A(){n=2 i
friend int fun (A, B);
}:
Class B
{
Private
int no ;
Public ;
B(){no=5;}
friend int fun (A, B) ;
};
int fun (A, a, B, b)
{

return (a not b.no) ;

float demo;
demo = f.x*f.x-fy*fy*(-1); void main ()
cout<<temp.x<<"+"<<temp.y<<"i"<<demo; L =
00] 13
1}/oid main() Bobj2;
{ cout <<fun (obj1, obj2)
clrser(); }
Member function : The variables declared insi ¢ X
complex C1(5,3), C2(3,2),C3=C i —C1*Co- red inside the class are k
N d‘i)splay()'(), C2(3,2) 1+C2,C4 =C1-C2, C5=C1*C2; the functions are known as member functions. Only the mef:\bef 1u:c1,2,{:2:: :::ae':::;zzr: T\d
di ; Private data members and private functions. However the vk
C2.display(); - . the public membe t .
Play() can be accessed from outside the class. Ao i) Sin

cout<<“Addition"<<end!;

LO3ID> Object Oriented Programming

84

Q 39. How a friend function is different than member function?

(PTU, Dec. 2008 ; May 2003}
i i bjects of two different classe.
ion : Friend function allow to operate an o of t iy
Aus.‘lrl::::';t:j:gfst I:fn two classes as arguments and operate on their private data.
Function wi
! e.g. #include <iostream.h>
class B ;
class A
{

private :
intno ;
public
A(){no=2;}
friend int fun (A, B) ;
b
class B
{
private :
int no+;
public :
B(){no=5;} .
friend int fun (A, B) ;

intfun (Aa,Bb)
return (a.no + b.no) ;

void main ()
{ _

A obj1 ;

B obj2 ;

cout << fun (obj1, obj2) ;
) :

Member function : Member function are those functions which are included in classes. These

functions are used to access private data members of the class. The syntax for accessing a class . .

member is similar to that of accessing a member of a structure i.e. using dot operator as show below:
object name. public data member name ;
Only public members can be accessed outside the class specification. The private and protected
class members can only be accessed by member functions that can be private or public.
Q 40. Write a program to illustrate overloading operators using friends.
Ans. #include <iostream.h>
const size = 3;
class vector
{
_int v [size];
public;
vector ();

Classes & Objects - II

vector (int * x);

friend vector operator * (inta, vector b);

friend vector operator * (vector b, int a);

friend istream & operator > (istream & vector &);
;riend ostream & operator << (ostream & vector 8:};
vector : : vector ()

{
for(inti=0;i<size;i++)
viil=0;

]. :

vector :: vector (int * x)

{ -

for (inti=0; i <size ;i++)
v (il =x[1];

}

vector operator * (int a, vector b)
{

vector C;

for (int+i=0;i<size;i++)
C.vll=a*b.vIi;
return C;

}

+ vector operator * (vector b, int a)

vector C;

for (inti=0;i<size;i++)

C.v[il=b.v[i]*a;

return C;

}

istream & operator >> (istream & din, vector & b)
{

for (inti=0,i<size;i++)

din > > b. v[i;

return (din);

ostream & operator <<(ostream * dout, vector * b)
{ _

dout << (" <<b.v [0];

for (inti=1;i<size;i++)

dout <<"<<b.v [iJ;

dout << “)";

return (dout);

}
int x [size] = {2, 4, 6};
int main ();

{

vector m;

LO3ID> Object Oriented Programming

(VJ‘ET}: 22“E:tler elements of vector m” <<*/n”;
Cin >>m;
Cout <<"/n";
Cout <<*m = " <<m <<"/n”;
vector p, g,
p=2"m;
g=n"*2;
cout <<"“\n”;
cout <<"P =" << P << "\n";
cout <<"q = " <<q <<"“\n";
return O;

} - -
Q 41. What is static storage class ? What are its characteristics ?
(PTU, May 2019 ; Dec. 2017)

Ans. The variable of class has the visibility of a local variable but the lifetime of an externa|
variable. That means once declared inside a function block, it does not get destoryed after the function
is executed, but retains its value so that it can be used by future function calls. - '

Q 42. What is the difference between calling method of constructor and destructor?

_ (PTU, Dec. 2014)

Ans. A constructor is a function that is called, either explicitly or by compiler generated behind
the scenes code, for the purpose of initializing the state of an object. It is given raw uninitialized
memory of the object's size. It can, of course, explicitly allocate memory for noncontiguous field, but
the compiler considers only the resulting pointer to be part of the actual object. We can also say that

constructors are automatically executed when the object of that class is created. A constructor is
written as a function that has the same name as the class. It returns no value, not even void.
Complex x(2.5,-1.0), y,z ; we do need to code an explicit destructor whenever the constructors
allocate a resource such as memory. If a constructor allocates memory, the destructor for that class
must free it. Furthermore, if any constructor for a class allocates a resource, then all constructors for
that class should do so, unless some complicated scheme allow the destructor to figure out when to
free the resource. The destructor has the same name as the class but is prefixed with a tidle character.
It takes no parameter since programs never invoke it explicitly.
~Complex() {... code to free resources...........}. The destructor is invoked whenever the object
is to be destroyed. We can also say that these are the type of member function which are automatically
executed when an object of that class is destroyed is called a destructor. .
Q 43. What is the need of friend function? (PTU, Dec. 2014)
Ans. The need of friend function : Suppose you are going out of your house for some days
and your house is under repair. Now to complete the repair either you leave the house unlocked or give
the keys of your house to some family friend. You will avoid to unlock your house and hand over the
keys to your family friend. So similarly friend function can share the private and protected data
member and member function.
Q 44. Explain the constructors with default arguments. How constructors can be called
explicitly? (PTU, Dec. 2014)
Ans. It is possible to define constructors with default arguments. For example, the constructor
-omplex() can be declared as follows :
complex(float real, float imag = 0);
The default value of the argument imag is zero. Then, the statement
complex ¢(5.0);

ses & Obj - . -
Clas jects - I1 87

assigns the value 5.0
complex ¢(2.0,3.0);

aSs51 . [

i AS:' F?:;ig Z;?;::’ig? ?;:‘;';;"5_‘9- The actual parameter, wherlu _specified. overrides the default

It is important to distin’guish l};Ing arguments must be the trailing ones.

constructor A=A(int=0). The et t arween the default constructor AzA()‘and. the default argument
no arguments. When called wit, gument constructor can be called with either one argument or

: = With no arguments, it becomes a default constructor. When both these
forms are used in a class, it causes ambigui

oo guity for a statement such as

ghe ambiguity is whether to 'Cay AZA() or AzA(int=0).

onstructor can be called explicitly.

For example :

#include<iostream.h>

#include<conio.h>

class b
(.
public:
b()
{
coutc-:"constructor"«endl;
}
k
void main()
{
clrscer();
b s;
b();
}
Here b() explicitly calls the constructor.
Q 45. What is the difference between overloading and overriding of a function? Write a
program in C++ to overload == operator and compare two objects using the operator.
(PTU, Dec. 2014)
Ans. The function overloading and function overriding are the concepts in C++ in which the
same function name is used. But in function overloading different number of parameters can be
Passed whereas in function overriding the number of parameters that are passed to the function are
same.
The function overloading may have different retumn type, but in function overriding the return
type of base and derived member function is same.

. Function overriding is a method that allows defining multiple member functions with the same
name but different signatures. The signature means its name plus the number and types of the
Parameters it accepts. The compiler will pick the correct function based on the signature. Overridin
s a method that allows the derived class to redefine the behaviour of member functions which th
derived class inherits from a base class. The signatures of both base class member function an
derived class member function are the same: however, the implementation and therefore, the behaviot

will differ,
#include<iostream>

O the real variable and 0.0 to imag (by default). However, the statement

using namespace std;
class Rational
{

private: :
int num ; /numerator

int den; // denominator
public:
void show();
Rational(int =1,int =1);
void set numden(int,int);
Rational add(Rational object);
Bool operator == (Rational object);
1
Rational Rational::add(Rational object)
{
int new_num = num*object.den+den*object.num;
int new_den = den*object.den;
return Rational(new_num, new_den);
}
void Rational::show()
{

}
Rational:Rational(int a, int b)

{
setnumden(a,b);
}

cout<<num << "/ << den << "\n":

void Rational::setnumden(int x, int y)
{

int temp, a,b;

a=x;

b=y;

if(b>0)

{

temp = b;

b=a;

a = temp;

}

while(al=0 && b!=0)

L.,

if(a%b ==0)
break;

temp = a%b;
as=b;

b = temp;

}

Classes & Objects - 11

o - ' 89
num = x/b;
den = y/b;
}

bool Rational::operator ==
return(num == object.num
}

int main()

{

Rational obj1(1,4), obj2 (210, 840), result1:
result! = obj1.add(obj2) ’
result1.show();

(Rationa| object) {
&& den == object.den);

if(obj1 == obj2)

{

cout <<"The two objects are equal."<<end|;
} :

else

{
cout <<"The two fractions are not equal."<<end|;

}

return 0;

}

Q46. What is Overloading and its use ?

Ans. C++ aIIov\fs you to specify more than one definition for a function nam
the same scope, which is called function overloading and Operator overloading respectively. An

declared declaration in the same Scope except that both declarations have different arguments and
abviously different definition. When you call another loaded function or operator, the compiler determines
the most appropriate definition to use by comparing the argument types you used to call the function
or operator with the parameter types specified in the definitions. The process of selecting the most
appropriate overloaded function or operator is called overload resolution.
Q 47. What do you understand by array of class objects ? Discuss with example.
(PTU, Dec. 2015)
Ans, The declaration of array of objects is very much similar to declaration of array of structures.
As an array can be of any data type, we can have arrays of variables that are of the class type. Such

variables are called as “Array of Objects”. Array of objects are greatly used while dealing with applications
Pertaining to database.

Syntax:
class <class_name>

{

private:

public :
k

class <class_name> <Object_name[SIZE]>;
Ex. class employee

LO3D> Object Oriented ngramming
S0

.{:har name [20];
float salary;

ublic: .
5oidge{_details (void); e
void display_details (void);

' | ad binary o
}C‘.MB. What is Operator overloading ? Write a program in C++tooverlo - l?:n 2?;};:
; — verloading refers to overloading of one operator fo,

o Operatz;:v:::? ::a:;%l.e?tzzrztiﬁ;?y can be ugs.ed to add two integer numbers, two float
i Lyl IT‘T‘,’turels variables, two union variables or two class objects. U_se of operator over.
numpers, 1w915 :; to see no difference between built in data type_and user defined dgta types.‘“ is
b:: lgfg tﬂzrgéieﬁul and fascinating features of the C++ which fine additional meaning to byl in
gtandard operator like +, — %, /, >, <, <=, > =elc.

Program :

#include <iostream.h>

#include <conio.h>

class arithmetic

{

float n;

public :

void get () -

cout <<"/n Enter member : \n”;

cin >>n;

) L
arithmetic operator + (arithmetic & a)
{ -
arithmetic t;

t. n = n+a-n;

returnt;

} . .
arithmetic operator — (arithmetic & a)
{ 4

arithmetic t;

t.n =n-a.n;

return t;

}

arithmetic operator(arithmetic & a)

{

arithmetic t;

t.n =n*a.n;

returnt,

}

arithmetic operator/(arithmetic &a)

{

arithmetic t;

Classes & Objects - IT

function that is declared static has t

91

t—n=n/a—n;
return t,

}

void display ()

{

cout <<n;

}

K _

void main ()

{

arithmetic a1, a2, a3:
al—get (),

a2-—get ();

a3 =al +a2; :
cout <<™\n Addition of two number : "
a3,display ();

a3=al-az;

cout <<"\n Subtraction of two number : *;

al.display ();
a3 =al +a2;

cout <<"\n Multiplication of two number o

a3. display ()
ad=al/a2;

cout <<"\n Division of two number : "

a3 display ();
getch ();

}

Q 49. What are static functions ?
Ans. Like static member var

O A static function can have
O A static member function
Class_name: : function_name;

iables, we can also have static member func
he following properties :

access to only other static members declared in the same class.
can be called using the class-name a follows :

(PTU, May 2016)
tions. A member

Q 50. Writea Program to overload the plus operator to add two complex numbers.

Ans. #include <iostream.h>
using namespace.std;
class complex
{
float x;
float y;
pubilic:
complex () {}

Complex (Float real, Float imag)

{ x =real; y = imag; }

complex operator + (complex);

void display (void);
I3

(PTU, May 2019, 201 6)

o ———— R WU . TR —— TR S e e

LO3D> Object Oriented Prt:n_:jran'mm_\g
———Ming

82

Complex Complex :: operator + (Complex C)

E}omp]ex temp;

temp.X = X + C.X;

temp.y =Yy + C.Y;

return (temp);

\}aoid complex :: display, (void)

{

cout << X << "+ J" <<Y<<"\n";

}

int main ()

{

complex C1, C2, C3;

C1 =Complex (2.5, 3.5); b

C2 =Complex (1.6, 2.7);

C3=C1+C2;

Cout <<"“C1 =", C1. display ();

Cout << “C2 ="; C2. display ();

Cout << “C3 ="; C3. display ();

return 0;

} o
Q 51. Consider a pointer declaration int i = 10, *p;p=&x;
Is p——; a valid statement, justify.
Ans. No, P —— s not a valid statement as x variable is not declared.
Q 52. What is the main difference between array of pointers and pointer to an array?

Explain with the help of a suitable example. (PTU, Dec. 2016)

Ans. For array of pointers : Refer to Q.No. 21

For pointer to an array : Arrays and pointers are intimately linked in C + +. Here the address

of the first element at memory location of block is known as base address which is assigned by array
name which is turn behave like pointer variable.

As we know that pointers were incorporated into the C++ language from C where strings are
expressed as character string arrays such as:

Char name [5] = “NEHA"

(PTU, Dec. 2016)

INJETHTAT O]

Look at an array with three elements :

int A [3];
0 2 4
25 35 45

A0l A[] A

By reference we can use arrays
&A[O]&A[1]&A[2

With the help of pointers use of Ar
"AYA+1)"A(A+2)

Address example : 1000

ray.

1002 1004

classes & Vpjects-1I ' 93

Q 53. Write a program to Searc

hakey string i y of strings, if a key string is found
then return its posjtion and then re y string in an array of string Y

Place that key string by any string using pointers.

(PTU, Dec. 2016)
Ans, #include <iostream.hs

#include <string.h>
#include <stdlib.h>
char *rep_str (const char *s, const char *old, const char * new1)
{

char * ret;

inti, Count = 0;

int new len = str len (newl);

int old len = strlen(old);

for (i=0; s [i]! =0, i++)

{ -

if (str str [&sli], old) = = & s[j])
{

Count ++;

i+=oldlen-1;

}

}

ret = (char *) malloc (i + count * (newlen — oldlen));
If (ret = = NULL)

exit (EXIT — FAILURE);

i=0,

while (*S)

{

If (strstr (S, old) = = S)
{

Strepy (& ret [i], new 1);
i + = newlen;

& + = oldlen'

}

else d
retfi++]=*8S +4;

ret [i] = \0%
return ret;
}

int main (void)

char mystr [100], C[10], d [10];

Cont <<(“Enter a string along with characters to be rep_str d An™);
gets (mystr);

Cont <<(“Enter the character to be rep_str d:\n")
cin>> C

Cont <<“Enter the new character:\n");

cin >>d

char * new str= NULL;

pus (mystr);

newstr = rep_str (mystr, c, d);
cout <<newstr;

free (newstr);
return 0;

: tors, and geg,,.
} ; jgnment opera esty
Q 54. When are C++ copy constructors, assignit (PTU, Deuctﬂrgl

respectively, invoked ? | cases where the copy congty, U
Ans. (a) Copy constructors : There are th_fee genera str“%r?
called : : T
O When instantiating one object and initialize |
O When passing an object by value. S
O When an object is returned from a function / . S
Assignment Oj:lu'ator : An assignment operator is called when an already initializeq obie%
assigned a new value from another existing object. L - -
Destructors : If the object was created as an automatic variable, its destructor is aUtDmalicaﬂ,’
Cly

h values from another object.

called when it goes out of scope. If the object was created with a new expression, then jtg destr,
is called when the delete operator is applied to a pointer to the object. .
Q 55. At what time are overloaded methods (as opposed to overridden) resolveq
. (PT,U' Dec, 29
Ans. In C ++ you can have two or more functions with the same name so long as they diffjp
their parameter list. This is called function overloading. The function is invoked whose Parameter i
matches the arguments in the call. Normally the compiler can deal with overloaded functiong fa
easily by comparing the argument with the parameter lists of candidate functions. However, this s not
always a straightforward matter. Consider the following code fragments :
Void f(double dl, int i)

{

.........

void f (double d1, double d2)
{

int main ()

cout << f (1,0,2);

}

How does the compiler know which version
following checklist and if it still can't reach a decisi
\ 1. Gather all the functions in the
| called.

off () to call ? The compiler works through e
on, itissues an error :

eurrent scope that have the same name as the funciof

3. If no function matches, the com

5. |If there is no clear winner of ¢

Classes & Objects - I1

Q 56. What do you unde
(i) constint *pOne;
(ii) int const*pTwo;
Ans. (i) Const int *pOne; : |t me :) .
3 sy ' angl - n s "
int. Here Its the “int” part that cantt change hat *p One is a constint i.e. pOne is a pointer to a const
int const * o 7 ;

(1 Int Const *5Two; : It means that just the variable value itself cannot be changed.

Q 57. Write a program to com i i i
Rees. it s Pare the two given strings using a pointer. (PTU, May 2017)

#include <stdio.n>
using namespace std:
main()

95

rstand by the following two declarations ?

(PTU, May 2017)

{

char str 1[50], str 2[50];

int str_cmp (char *, char "
cout <<“Enter first string”;

gets (str1);

cout <<"Enter second string”;
get (str2);

If (str_cmp (str1, str2))

cout <<"nstrings are equal”:
else

cont <<"nstrings are not equal”;
return O;

}

int str_cmp (char * S1, char * S2) {
while ("*S1==*82)

{

If (*81 :=."||‘S2==")

break; ;

S1+ +;

S2 +.+;

}

If(*S1 ==Il&&ts2=l|)

return 1;

return 0;

}
Q 57. Differentiate between static and dynamic memory allocation. (PTU, May 2019)
Ans. The major difference between static and dynamic memory allocation :
Static memory allocation Dynamic memory Allocation

1. In this case, variables get allocated | 1.

permanently
2, Allocation is done before program execution | 2.
-3. It uses the data structure called stack for | 3.

In this case, variables get allocated only if
your program unit gets active.

Allocation is done during program execution
It uses the data structure called heap for

implementing static allocation implementing dynamic allocation.
4. 1ess efficient 4. More efficient
5. There is no memory reusability. 5. There is memory reusability and can
be freed when not required.

QaQ

Chapter

lnheriiqn%

Base Class, Inheritance and protected members, Protected base class. mherltanci. Inhen‘tin
multiple base classes, Constructors, Destructors and Inheritance, Passing parameters tq basa

class constructors, Granting access, Virtual base classes.

POINTS TO REMEMBER /22°ff
that

& _Inheritance is a mechanism that allow new classes to be derived from existing class (es)
facilitates reusability where existing class (es) is/are known as base class (es) and the Newly

created class is known as derived class.)
Derived class inherits all the properties of the parent class and add its own.

Inheritance represents is a kind of relationship.)
A class can be derived using public, private and protected derivation. .
In public derivation, public and protected member of the base class remain

member of the derived class, respectively.
In protected derivation, public members of the base class become protected members of the

derived class.
The public and protected members of the base class become private members of the derived

ple, multilevel, hierarchical, hybrid and multi path.

=
=
L

i public and protecteg

=

class.
Various forms of inheritance are single, multi
In single inheritance only one class is derived from single base class.

In multiple inheritance, a class is derived from two or more than two base class.

In multi level inheritance a class is derived from single base class and further can be used as
base class for deriving another class.

In hierarchical inheritance more than one class is defined from same base class.

In hybrid, a class is derived involving two or more from of inheritance.

Multiple inheritance may also cause ambiguity when a class’s derived from more than one base
class that is turn are derived from the same base class (es). This ambiguity is resolved using

virtual base class.
A technique for reusing functionali

another class as a data a member.
¥ Composition represents has a relationship.
¥ Order of execution of destructor is reverse
Object slicing is a concept where additiona

base class object.

88qq

884

of constructor execution.

96

ty is object composition, where an object is contained in

I attributes of derived class object is sliced to forma

97

Inheritance
 con y

= Ihj:sos ::: c:or:f r:ﬂay an important role in initializing an object’s data members.

< g ontain objects of thejr Classes. This is known as containership or nesting.

QUESTIONS-ANSWERS

Q 1. What _do y0|_.| Mmean by inheritance? (PTU, Dec. 2010)
Ans. Inheritance is one of the Powerful technique of OOP which allows new classes to be built

from existing cia_sses. Itis the mechanism of deriving new class from old class, new class is called
sub class or derived class. Ol class s called super class or base class. The derived class inherits
all the properties of base class and jts own, where the base class remain unchanged.

The general form of inheritance js -

{

Class derived_name :

b
Q2. What are applications of inheritance? (PTU, May 2009)

Ans. Applications of Inheritance :
ity. Once a base class is writien and debugged, it need not be

1. It permits code reusabil
touched again but can be used to work different situations.
and money and increases a program’s reliability.

2. Reusing existing code saves time
nceptualization of a programming problem, and in overall

3. Inheritance also help in original co
design of the program,
g class libraries. A programmer can use a class

4. Reusability increases the ease of distributin
mpany and withut modifying it, derive other classes from it that are

created by another person or co
suited to particular situations,

Q 3. What do you mean by derived class? (PTU, Dec. 2011, 2008)

Ans. Reusability and extensibility is among the most important features of object oriented

new ciass, called derived

programming. And it is possible through only inheritance. Inheritance allows
class, to be built from existing class called base class instead of building from the scratch. The
derived class is called child or subclass.

: A derived class may itself be a base class from which additional classes can be derived. There
is no specific limit on the number of classes that may be derived from one another, which forms a

class hierarchy. The syntax for defining a derived class is
class derive class name : [Accessspecifier] Base class name

// members of the derived class

)i o
The accessspecifier is optional and can be public, private or protected. The default acces

specifier is private.
Q 4. What is function overriding?
Ans. The derived class can have a member functions with same name, same retur type ar
same list of arguments are defined in the base class. In such a case, m.m, lyncuon of
derived class overrides the member function of the base class. The overriding function can ma

(PTU, Dec. 2009 ; May 200

LUTAAD VU CLL TSR l'lugramml

refinements or enhancements suited to the derived class. Wfih g‘;?;l:gi;'lg functions, the calls i, the
program work the same way for objects of both base and derive d ing overridden met
The overriding methods in the derived class invokes the correspon d?i b alcinaal me hoqs of
the base class to handle the parts of the object that pertains to the T'ass and adds nalinstructiong
to handle the parts of the object that are added in the derived class.
- What do you mean by visibility mode? - o
2:9. Inheritan:e isa pmce:s of creating a new class from. the exlstln_g one. A visibility
specifies the way in which the properties of the base class are derived. A derived class can hay
of the following access specifies :
1. Public inheritance
2. Private inheritance
3. Protected inheritance.

Q 6. What do you mean by virtual base class? (PTU, Dec. 291
Ans. A different structural pattern with multiple inheritance occurs when a class derives fromg
more than one base and there is a common base shared among derived classes. The shared bagg

e Ong

class is called a virtual base class. For example we have one class A. This class A is inherited by twg

other classes B and C. Both these classes are inherited in new class D. This is shown in fig. given
below :

Class A

Class D

Q7. Does multiple inheritance lead to ambiguity? How can the ambiguity be removed?

(PTU, May 2005)
es have members

ber with that name,
uses ambiguity when an object of the derived class access

- compiler will not be able to figure out which of these members

Ans. Yes, multiple inheritance can lead to ambiguity. When the base class

with the same name, while the classes derived from these classes have no mem
then accessing that common member ca

should be used.
This ambiguity can be resolved us;
he function lies. Thus obj. class name : : function name () ;

refers to the version of function () that is in the specified class.

Q 8. What do you mean by object slicing?

Ans. Object slicing is a concept where additional attributes of a derived class object s slicedto
rm a base class object. Object slicing doesn't occur when pointers or references to objects are
assed as function arguments sinch both the pointers are of the same size. Object slicing will be
dticed when pass by value is done for a deri

: ved class object for a function accepting base class
ect. .."? Pl

ing scope-resolution operator to specify the class in which

Inheritance 99

Q 9. Explain the concept of composition d on.

Ans. We say that class B ig corrrposed w;hn c;:‘:iaﬁ class B has a class A or class A”
member ; for short we can S8y class B has a class A and as before, class B inherits from class A if
class B is derived from class A ag a child class ; for short we say class Bis a class A.

As itturns out, you can always replace an thamancg relationship by a composition relationship
as indicated in figure below if class B has a class A member object *_PA, then

Class A —|
— datafield
FOO
0 F ClassB | Class A
Class A* —PA — datafield
FOO () {PA— FOO () FOO ()
Class B]
FOO () {ClassA:FOO ()}
Inheritance and composition
Q 10. What is inheritance? What are its different classifications? How the classes ar
initialized in inheritance? (PTU, Dec. 2008 ; May 2011, 200

OoR
What are the various types of inheritance in C++? Givean exampie of each.

. derived class to be built from the exsting cla
called base class, instead of building from the begini

general features of some given class and then adding specific features.

The derived class inherits all of the capabilities of the base ciass and can add other feature

its own. There is no specific limit on the number of classes that may be derved from one anot
which forms a class hierarchy.

C-++ supports three access specifiers : private, protected and pubic
Syntax for inheritance is

Class Base

{

private ;

protected :

< o Derived Class

ject Oriented Programm;
- LO3D> Object ——Ming

cl;ass derived : [Access specifier] Baseclass

'}I'f:w access specifier is optional and can be public, private or protected. The default Specifierig
pnva!e;orms of Inheritance : Inheritance is classified into the folloyving Lormsc:lass e

1. Single Inheritance : When only one class is derived from 5|.ngle ased i~ .a S I;‘-'n
of class. is known as single inheritance. Further, the derived class is not use s for
another class derivation.

Base Class

h 4

2, Multilevel Inheritance : When a class is derived from single b_ase class and funl;ler canbe
used as base class for deriving another class. This derivation can continue upto any level.

Base Class 1 Base Class 2

. y
! — T

Derived Class

- 3. Multiple Inheritance : When a class is derived from two or more than two base class. The

derived class inherits the properties of all the base classes. The derived class is not used further in
.deri\a'ng another classes. ;

Base Class

r

Sub Base Class 3

r

Sub Base Class 2

Drive Class

 visibility mode is optional and, if present may be ei

Inheritance

101
4. Hierarchical Inheritan

: ¢e : Whem more than one class is derived from same base class.
Further, derived classes are not ygeq as base classes.

Base Class

L

] v
Derived Class 1] Derived Class 2] LDerived Class 3]

5. Hybrid Inheritance : When class is derived involving two or more forms of inheritance.

Q 11. How we can defining a derived class?
Ans. A derived class can be d
addition to its own details. The general
Class derived_Class-name : visi

efined by specifying its relationship with the base class in
form of defining derived class is:
bility mode base-class-name

{

....... 1/

weref/ member of derived class
....... i

¥s

The colon indicates that the derived class-name is derived from the base-class-name. The

ther private or public. The default visibility-mode is
private visibility mode specifies whether the featur.

es of the base class are privately derived or publicly
.derived. &
Example
Class ABC : Private XYZ // Private derivation
{

member of AB

Class ABC : Public XYZ
{
member of ABC _

// Public derivation

Class ABC : XYZ
{
member of ABC

/I Private derivation by default

W,'hen a base class is privately inherited by a derived Class,
become ‘private members' of the derived class and therefore the p
Only be accessed by the member function of the derived class. T

Public members of the base clas
ublic member of the base class ¢
hey are in accessible to the objec

LO3D> Object Oriented Programming

102 5 i . a public member of a class can be aocassec_l by its own pbjects
% ”Bt::“ dﬁm’ The result is that no member of the base class is accessible to the objects o
using . :
kot cla:s. hand, when the base class is publicly inherited, ‘public members’ of the })ase Class
beaongn ‘p"t:teﬂ;tnimber;' of the derived class and therefore they are elxccessible to the objects of the
derived class. In both the cases, the private members are not inherited and therefore, the privae
- embers of its derived class.

members of a base class will never become the m .
' loadin

_ Write a program in C++ that illustrates the concepts of function over gang

Qi2.w prog (PTU, May 201q)

function overriding. .
Ans. Program to illustrate function overloadin
#include <iostream.h>
#include <conio.h>
#include <process.h>
class student

{

g and function overriding

private
char name [20] ; -
char address [30] ;

public _

void readdata ()

cout <<"Enter name & address” ;
cin >> name >> address ;

void read data (char a, char add) // function overloading

name=na;
address = add ;

void display ()

cout <<“Name” << name ;
cout <<"Address <<add ;

class body : public student

private ;
in'ht, wt ;
public

- void getchar ()

cout <<“Enter height & weight of student” :
cin >> ht >> wt ;

void display () / function overriding

ritance
Inhe 103

student : display () ;
cout <<*Height and Weight is” <<h + <<wt :

}
b
void main ()
body S + 82 : .
sl.readdata () ;
s1.getdata (g } /! calls overloaded member function read data ()
s1.display () ;

s2.readdata (“AB", ‘234, 16, PB");
s2.get data (); '
s2. display () ;
getch () ;
}
Q 13. What are the various types
PO . el ypes of functions used in the classes? What do you mean by
i\n:_. Fo:lo:ving are the functions used in the classes : i - :
- Simple functions : Class includes sim ion ich i
! ple functions which is group of number of
stgtements. These functions are known as member functions of the class 1?18 gl i
private member data. PR m
" :hg:::si;r:;::; d Cl?snﬁg:ncgc"r is special member function who is used to initialize an objectofa
i ated. is same as that of it . i i i
o gn 3:)‘9(“ St gl e its class. A constructor is automatically invoked
- Virtual function : A member function ;vh i
\ ¢ ! ose function declaration is preceded i
keyarv:ﬁrd is knpwn as vutua_l function. These functions are defined in a base cla%sin ubl‘by :r:iuyal
and they provide a mechanism by which the derived classes ca override it e

In many cases, virtual functions are declar i body i.e. they
' Ses, ed without i definiti
Such virtual functions are called pure virtual function. - . i "

class can occur within a public i ection enclos
‘ » protected or private s i i
nested class is visible only in its enclosing clapss scope - . The D
Nested classes can use member of its ing
dime enclosing class. Nested classes cannot have static

e.q.
class student
{
private :
int roll no ;
char mame [20] ;
public :
class date

{

private :

ject Oriented Programm;
LO3DD> Obje S Mming

104

int day, month, year ;

= public :

// member functions of data class

} date of birth ;

// member functions of student class

b . -
Q 14. Distinguish between single and multiple inheritance.

Ans.

(PTU, May 204 0)

o —

| Single Inheritance

Multiple Inheritance

When only one class is derived from single base
class, such derivation of class is known as
single inheritance. Further, the derived class is
not used as a base class for another class
derivation
eg.
include <iostream.h>
include <string.h>
Class A
{ // base class
Protected

~ char name [30] ;

int age ;
b
Class B : Public A // derived class

{

private ;

int weight ;

public

void get data () {

cout <<“enter name” ;
cin >> name ;

cout <<“Enter weight” ;
cin >> weight ;

void showdata () {

cout <<“Name” << name
cout <<“Age” <, age ;
cout <<*weight” << weight

void main () {
Bobjb;

objb. getdata () ;
objb. show data () ;

0 F R
When a class is derived from two or more than

two base class. The derived class inherits the
properties of all the base classes. The deriveq
class is not used further in deriving another
classes.
e.g.
#include <iostream.h>
class A
{

Protected

int age ;
b

Class B

{
Protected

Char name [30] ;

i

Class C : Public A, Public B
{

Private

int z
};

void main ()
{

C objc ;
}

Inheritance 108

Q15. What are base and deriveq classes? How do they help in inheritance?

(PTU, May 2007)

H OR
What is inheritance? How it ig implemented? Distinguish between public and private
inheritance.) (PTU. Dor)
‘l:ns- |I'I|hen!§nc;e Zuow:a New class, called derived class, to be built from the existing class
callad tase crans nalead of bulding fiom sorsioh, New clacsas can be iy by first inheriting the
general features of some glven class and then adding specific features.
o W deréved CITSS inherits all of the capable of base class and can add refinements and extension
of its own. A ﬁs o cass s often called parent, superclass or ancestor. The derived class is called
descendent, child or subclass. A derived class may itself be a base class from which additional

classes can be derived. There is no specific limit on the number of classes that may be derived from
one another.

C++ supports three access specifiers :
private, protected and public.
The syntax for defining a derived class is

class derived class name - [Access specifier] Base class name

} wweneseen. /] M@mbers of the derived class
The access specifier can be public, private or protected. The default access specifier is private.

The role of access specifier is 2

1. When public access specifier is used, the public members of the base class remain publi
members of the derived class. And protected members of the base class remain protectex

. members of the derived class.

2. When private access specifier is used, the public and protected members of the base clas
become private members of the derived class.

3. When protected access specifier is used, the public members of the base class becom
protected members of the derived class and protected members of the base class remai
protected members of the derived class.

Many types of inheritance is allowed in C++. These are -

1. Single inheritance : Derivation of single class from only one base class.

2. Multilevel : Derivation of a class from another derived class. The class A is top base cla

and B is derived of A further C is derived from class B.
3. Multiple : Derivation of a class from two or more base classes.
4. Hierarchial : Derivation of two or more classes from a single base class.
5. Hybrid : Derivation of a class involving two or more forms of inheritance.
e.g. This example shows the implementation of inheritance
#include <iostream.h>
#include <string.h>
class A // base class
{
protected :
char name [20] ;
int age ;
public :
/l some member functions

IDD Object Oriented PrClgrammi
106 Lo ’ ____“HEE

¥5

class B : public A /l derivd class
: private :
int weight ;
public :
void getdata ()
{
cout <<"Enter name" :
cin >> name ;
cout << "Enter age" ; -
cin >> age ;
cout <<"Enter weight" :
cin >> weight ;

}

void show data ()

cout <<"Name" << name :
cout <<"Age" << age ;
cout <<"weight" << weight ;

}

void main ()

I

B obj;
obj. getdata () ;
obj. show data () ;

In this program class A is the base class and have two data members name and age. These
data members are accessible from any class th

hat is derived class which adds one data member
weight and two member functions getdata () and show data ().
Public inheritance and pri

ivate inheritance : C++ provides different ways to access class
members one such access contr

inheritance, the keyword public is

used. The keyword public specifies that objects of the derived class
are able to access public member functions of the base class.

» the result is that no member of the base class is
accessible to objects of the derived class.

Q 16. Is it possible to inherit a base class in protected mode 2
Ans. Yes, It is possible to inherit a base class in
the public and protected members of the base class become protected members of the derived class.
Q 17. Explain multiple inheritance with the help of example.
Ans. Multiple inheritance allows us to combine the features of several existing classes as a
starting point for defining new classes.
Example:
#inlcude <iostream>
class M

{

protected mode. In protected derivatian, both

Inheritance

107
protected;
int m;
public:
void get_m (int);
J
class N
{
protected;
int n;
public
void get_n (int);
k
Class P : public M, public N
{
public;
void display (void);
¥
void M : : get_m (int X)
{
m = x;
}
void N : : get_n (inty)
{
n=y;
b
void P : : display (void)
{

cout <<"m =" <<m <<“/n™
cout <<“n =" <<n <<"/n";
cout <<"m*n = “<<m*n<<“/n™:
int main ()

Pp;
p:get_m(10);
p. get_n (20);
p.display ();
return 0;

Q18. How protected base class inheritance is implemented?
Ans,

#include <iostream>
class base

{

protected:

int i, j;

public: .

void setij (int a, int b).

i=a;

LOIDS Object Oriented P’°9""=‘mn1in .
———2aMmming

108
J="b;

} :
void show ij ()

cout <<"\n:" <<i <<"\nJ: <<j;
k _ ‘

class derived : protected base
{

int K;

public :

void set K ()

{ .

setij();
K=i+j;
}

void showall ()

Cout <<"\nK:" <<K <<Show ()

}
i

int main ()

derived ob;
Ob.setK();
ob.showall (); .
return O;

}
Q 19. How constructors are handled in multiple inheritance? (PTU, Dec. 2007)

- Ans. Multiple Inheritance : A class can be derived from more than one class. This is called
multiple inheritance. The syntax for multiple inheritance is similar to that for single inheritance like

Class A

{

¥

Class B

{

b

Class C : public A, public B

109

Inheritance
#include <iostream.h>
class A
{

private :
int no ;
float not ;
public :
AQ)
{

no=3;
noi=35;

}
A (int a, float b)
{

no=a;
nol=b:
§is
void get ()
{
cout <<"Enter integer & floating no.” ;
cin >>no>> not ;
1
void show ()

cout <<"No. is" << no<<"Floating is" <<nof ;
}
)

Class B
{

private :
charch ;

public :
B()
{
ch="A";}

B (char C)

{ ch=C;}
void get ()
: cout <<"Enter character"

cin >>ch :}
void show ()

{

}
H _
Class C : public A, public B

cout <<"character is" <<ch

LO3D> Object Oriented F'rogramming

110

rivate :
A int n2 ;
ublic :
P C().A()},B{)
n2=5;
(C int{r, float s, chart, intu) : A (r, s), B (f)
}

n2=u;
}
void get ()

A()::get();
B()::get();

cout <<"Enter any no." ;
cin >>n2 ;

}
void show ()

A()::show();
B()::show();
cout <<" No. is" << n2 ;
}
)i
void main ()
{
Cobj;
cout <<"Data is" ;
obj. get () ;
C obj1 (5, 5.5, 'B', 8) ;)
cout <<"Data using zero argument constructor" ;
obj. show () ;
cout <<"Data using multi- argument constructor" ;
obj1. show ()

}

In above example derived class C object will call constructors of base classes A and B and
i tructor.
= ﬂggs.cﬁzi are Constructors and destructors invoked in derived classes? What actz':;:l-llv)
happens when a destructor is invoked? ' : ‘ (PTU, May dor
Ans. In an inheritance hierarchy, each default constructor invokes its parent's d'efault constru :
before it executes itself and each destructor invokes its parent's destructor after it executes Itseni
The effect is that all the parent default constructors executes in top-down order, and all the pare
destructors execute in bottom up order.
class Person -~
{ public:
Person (const char* s)
{ name = new charfstrien(s) + 1J; strcpy(name.s); }
~Person() { delete [] name : }

Inheritance 111

protected:
char® name:

class Student : public Person

{ public:

Student (const char* s, const char m): Person(s)

{ major = new char [strlen(m)+1] : strepy (major, my); }

~Student() {delete [] major }

private :

char*major:

-k

int main ()

{ Person x(*Ram");

{ Student y(“Medha”, “Biology”);

)

When x is instantiated, it calls the Person constructor which allocates 4 bytes of memory to
store the string “Ram”, Then y instantiates, first calling the Person constructor which allocates 6
bytes to store the string “Medha” and then allocating 8 more bytes of memory to store the string
“Biology” immediately, scope of y treminates because it is declared within an internal block. At that
moment, y’s destructor deallocates the 8 bytes used for “Biology” and then calls the Person destructor
which deallocates the 6 bytes used for “Medha”. Finally, the Person destructor is called to destroy x,
deallocating the 4 bytes used for “Ram”,

Q21. Howdo the different constructors and destructors behave in an inheritance hierarchy?

(PTU, May 2005)
Ans. Constructors in inheritance : In case of inheritance, usually the objects of derived class

base class is executed first and then the constructor of the derived class.
. Destructors in inheritance : Unlike constructor, destructors in the class hierarchy are invoke

in the reverse order of constructor. The destructor of that class, whose constructor was executed last
while building the object of derived class, will he executed first whenever the object of the derive!
class goes out of scope.

When the object of the derived class goes out of scope, the destructors in the class hierarch
destroy their own part of sub object, i.e. part of the object that corresponds to that class.

Q 22. How parameters are Passed to base class constructors,

Ans. Class X

{

public;

X (int_, intb_){a=a_;b=b_;}
private:

int a;

int b;

Classs y : public x
y():X(10,20)

{}
k

] UNEHLWEUY F10Odrg
112 _ LO3D> ODbject e Mmiy
Q 23. What are the implications of public, protected and private vi es 9

(PTU, Dec. 2017 ; May 201?}
Ans. You can declare a derived class from a base class with different access control j.g, p'-'blic
inheritance protected inheritance or private inheritance.
#include <iostream.h>
using namespace std;
class base

{

-

class derived; access_specifier base

(
b

Example of public, protected and private inheritance in C++
Class base
{ public;
int x;
protected:
int y;
private :
int z;
K ,
Class public Derived : public base
{ /N xis public
/l y is protected
//z is not accessible from public Derived

5 ;
Class protected derived : protected base
{
/Ix is protected
/l'y is protected
/l z is not accessible from protected Derived
k '

Class private derived : private base

{ / xis private

/! y is private :

// z is not accessible from private Derived

k ' : #

In the above example, we observe the following things :

U base has three member variables » X, y and z which are public, protected and private
member respectively.

O public Derived inherits variables x and y as public and protected. z is not inherited as itis
a private member variable of base. '

O protected Derived inherits variables X and

* inherited. If we derive a class derived fro

variables X and Y are also inherited to the

d private Derived inherits variables X and Y.

y. Both variables become protected. Z is not

m protected Derived from protected Derived,
derived class.

Both variables become private. Z is not inheritéd

Inheritance 113

ved from private Derived from private Derived, variables x and y are
they are private variables of private Derived.

If we derive a class derj
not inherited because
Q24.Create a class Strin

A g With the following attibutes and declare appropriate constructors
and methods
char *str '
int maxlen (default = 80)
int length

O Does the String class re

quire a copy constructor ? If required, define one.
O Define a destructor for e .

the String class. What would happen, if you do not define a

destructor? ‘ (PTU, May 2015)
Ans. Yesthe string class require a Copy constructor. Here is the example that defines constructor
and destructor for a string class.
Class string

{
String (char * astr)
{

str = new. char [size of (astr)];
strepy (str, astr);

}

string (string & strob])

{

tmpstr = strob].get chars ();
str = newtmstr [size of (tmpstr)];
strcpy (str, tmpstr)-

~ string ()

{

del str;

}

char * str;

h

A destructor is a special member function that is called when the lifetime of an objectends. The

purpose of the destructor is to free the resources that the object may have acquired during the

lifetime. The destructor is called whenever an objects s lifetime ends, which includes.
Q Programtermination

O thread exit

O end of scope

O delete expression

O end of the full expression

O stack unwinding. -

Q 25. What is reusability of code ? How itis achieved in C++ ? Define a base class called
Animal with three members : Name, Age and a method to display name and age of the Animal.
Derive two classes Cat and Dog from Animal class and write a driver program to create Catanc
Dog objects with suitable value. Display the contents of the objects by calling the Displa
method on the derived objects. (PTU, May 201t

Ans. Reusability : In computer science and software engineering reusability is the use
existing assets in some form within the software product development process. It helps you to reu:
the existing code rather than trying to create the same over again. Inheritance helps the code to !

LO3ID> Object Oriented ngramrni

114 e
cused in many situations. The base class is defined and once it is compiled, it need not be rewg

: f inheritance, the programmer can create as many derived classes from the ba :
j:;nsgat: ﬁ::gggﬁl:‘e adding specific features to each derived class as needed. Inheritance js One o
1e most powerful features of object oriented programing language-.

Program:
#include <iostream.h>
#include <conio.h>
class animal.

{

char name [10];
int age;

public;

void getdata ()

{

cout <<*\n Enter name”;
cin.get (name, 10);
cout<<“\n Enter age”;
cin> > age;

}
void putdata ()
{

cout <<*\n The name is ;" <<name<<end!:

cout <<“\n The age is ;" <<age <<endl;
o

k - ¢

Class derived cat : public animal

{

charname[10];

int age;

public

void indata ()

cout <<"\n. enter the name™;
cin. get (name, 10);

‘cout <<“\n enter age”;

cin >> age;

}

void outdata ()

cout <<"\n The name is :" <<name<<endl;
cout <<\n The age is :" <<age<<end|;

}

class derived dog: public animal

{ :

char name [10];

int age;

public

Inheritance

115

void input ()
{

cout <<"\n Enter name™:
cin.get (name, 10);
cout <<"\n Enter age™
cin >> age;

void output ()

cout <<"\n the name is” <<name <<endl;
cout <<"\n the age is” <<age <<endl;

}
2
void main ()
{
derivedcat obj1;
deriveddog obj2;
obj1. getdata (); -2
obj1. indata ();
obj2. getdata ();
obj2. input ();
obj1. putdata ();
obj1. outdata ();
obj2. putdata ();
obj2. outdata ();
getch ();

}
Q 26. What do you mean by Multiple Inheritance ? Explain with the help of an example.

(PTU, Dec. 2015)

Ans. A class gets inherited from one or more classes are given in the figure this is known as
multiple inheritance. Multiple inheritance allows to combine features several existing class for defining
one new class. The syntax for derived class using multiple inheritance is as follows -

Class B1
{s
Class B2
{};
Class Bn
{}
Class D : visibility mode B1, Vm B2,
{
b

Where viéibility mode may be public or private. For example : declare a class p derived from r

& n class m has one variable & one member function class
member function where class n is privately inherited class n is public give class p representation.

Class m
: {
int x;
public : void getd ();
N

n has one private variable & one publ

- LO3D> Object Oriented Prog,-ammin

Class n

{
private :
int ();
public:
void sum (); }
class p: private m, private n;

{

public:

void disp ();
}

Q 27. What are virtual constructors ? Give relevent examples to explain it.
(PTU, Ma

Ans. A constructor cannot be virtual. There are some valid reasons that justify this statem;:L

“First, to create an object the constructor of the object class must be of the same type as the Clagg
But, this is not possible with a virtually implemented constructor. Second, at the time of Calling ,

constructor, the virtual table would not have been created to resolve any virtual functions calls, Thug

a virtual constructor itself would not have anywhere to look up to. As a result, it is not POssiblg 1,

declare a constructor as virtual. .
Q 28. Explain how to call a base member function from derived class member fUnctinn.
(PTU, Dec. 2016 ; May 2915]

Ans. class emp

{

public:

void empName()
{

cout<<“emp-XYZ"<<endl;
}

I3

class dept : public emp

public:
void empName ()

cout<<“dept-XYZ"<<endi
emp::empName();

b
Following example shows how stream operators are overloaded :
#include <iostream>
using namespace std;
- class Distance
{
Private;
int feet;
int inches;
public :
. Distance () {
feet = 0;

function outside a class or when we want to us
same name.

The :: (scope resolution) operator is used to qualify hidden names so that you can still use
them. You can use the unary Scope operator if a namespace scope or global scope name is hidden by
an explicit declaration of the same name in a block or class.

in global namespace scope. The statement :: count

in global namespace scope.

Advantages of referencing : The address where a variable is stored in memory can be

referred using address or reference operator.

For example : The address of a variable ; can be accessed by the expression &i, when & is an

address of reference operator that evaluates the address of its operand. We can als

reference operator & is used to simplify the usage of pointers in C++.

Q 30. What is virtual destructor ? What is the use of declaring it under multipl
(PTU, May 2017

destroyed explicit

117

inches = i;

}

friend ostream & operator <<
{ 113

output <<“F", << D, feet <<"I"<<D.inches:
return output; !
}

friend istream & operator s> (istream & input, Distance & D)

(ostream & output, const Distance & D)

input >> D. feet >> D, inches

return input;

13

int main () {

Distance D1 (1, 10) D2 (5,11),D3;

cout <<“Enter the value of object” <<end};
cin >>D3;

cout <<"First Distance; “<<D1 <<end|;
cout <<"Second Distance;” <<D2<<endl;
cout <<"Third Distance:” <<D3<<endl;
return O;

}

Q 29. What are the advantages of scope resolution and referencing ?

(PTU, Dec. 2016,2014)
Ans. Advantages of scope resolution : The Scope resolution operator (::) is used to define a
€ a global variable but also has a local variable with

For example :

int count = Q;

int main(void) {

int count = 0;

.- count = 1; //set global count to 1
count = 2; //set global count to 2
return Q;

-}

The declaration of count declared in the main() function hides the integer named count declared
=1 accessess the variable named count declared

inheritances? _ ‘ .
Ans, Virtual Destructor : |f an object (with a non-virtual destructor) is

0 say that the

118 LO3D) Object Oriented ngrammi

. destru .
applying the delete operator to a base-class pointer to the object, the ‘t’gﬁfﬁz srabi efﬂ"’;&g n
(matching pointer type) is called on the object. There is a simple solu l‘rtual i though, . arg
virtual base-class destructor. This makes all derived class destructor Vi roby 16 destiopad Y dony
have the same name as the base class destructor, if the object_ inthe huerab_ egt o destructexm'cmy
by applying the delete operator to a base-class pointer to a derived class object, or f°"1ha
ropriate class is called.)

e A progam to demonstrate how to define, declare an_d_ invoke the virtual destructor Membg,
function in multiple inheritance using the polymorphic technique.

#include <iostream.h>

Class base {

public :

virtual void display ();

virtual ~base ();

class derived : public base
{ ;

public :

virtual void display ();
virtual ~derived ();

}

Void base ::display ()

{

cout <<"Base class member function™;
cout <<endl;

}

base : : ~base ()

{ P

cout <<"base class destructor is called”;
cout <<endl;

} .

void derived : : display ()
{

cout <<“Derived class member function™;
cout <<end|;

}
derived : : ~derived ()
{

cout <<"derived class destructor i
cout <<endl;

}

void main ()

s called™

base * ptr = new derived;
ptr —display ();

delete ptr;

}

. - QaaQ

Chapter

Virtual Function and Polymorphism

virtual function, calling a Virtual fu
inherited, Virtual functions are, hi
virtual functions, Early and late

nction through a base class reference, Virtual attribute is

erarchical, pure virtual functions, Abstract classes, Using
binding.

POINTS TO REMEMBER @:‘

& Polymorphism is the ability of the objects to take different forms.

w The virtual functions allow Programmers to declare functions in a base class and redefine the
same with the same name in its derived classes.

5= The prototype of virtual function in base class and derived class must be identical.
= A pure virtual function has no im

plementation in the base class, hence, a class with pure virtual
function cannot be instantiated.
¥ A class containing pure virtual functions
classes are called abstract classes.

¥ Polymorphism is technique that allows d
shared by various object.

cannot be used to define any objects of its own. Such

efining various forms of a single function that can be

¥ - Polymorphism can be implemented at compile time as well as run time.
= A compile time, polymorphism is im

plemented using function overloading and operator over
loading.

= At run time, polymorphism is implemented using virtual functions.

™ Functions and operator over loadin

g are the examples of compile time polymorphism.
[

In run time polymorphism, an appropriate member function is selected while the program is
running. C++ support the run time polymorphism with th

e help of virtual function.
*F Binding is the process of typing the function call to function defination.
®¥ When binding happens at compile time, it is known as early binding.
™ When binding happens at run time, it is known as late binding.
= o implement run time polymorphism you need to m
function through pointer to the base class.
" Afunction in a class prefixed by keyword virtual becomes virtual function.
™ If a virtual function is defined in the base class, it need not
derived class. In such cases, the respective calls will invoke
™ A virtual function, equated to zero is called a pure virtual fun

ake a function virtual and access the virtual

be necessarily redefined in the
the base class function.
ction.

119

LO3DD object Oriented Programming
120

QUESTIONS-ANSWERS |

. What do you mean by binding? R .
:n:;.‘;;ding :eiers to the process that is used to convert identifiers d{f‘;ucg atf] variable g,
function names) into machine language addresses. Although binding is used for both variable gy,
ions. OR .
fulrwmélinding refers to the linking of a procedure call to the code to be executed in response tq the
call. .
i i namic binding?
Q2. What is the difference between static and dy (PTU, May 2006, 2005)
OR §
Explain in brief bindings in C++. (PTU’ Dec. 2007)
Ans. Static Binding : The information about the number and type of argumem'_s IS available the
compiler at the time of compilation. Therefore, the compiler is able to select the function for particular
call at the compile time. This is called early or static binding. It is early in the sense that a function
definition is bound to its call at the compile time and static in the sense that, this binding cannet be
changed at execution time.
Dynamic Binding : Sometimes, it is required to select member function at that time, At run
time, when it is known what objects are under consideration, the appropriate member is invoked.
Since the function is linked with a particular class after the compilation i.e. during program execution,
the process is called late or dynamic binding. It is late in the sense that a function definition is bound
toits call at the execution time and dynamic in the sense that this binding can be changed at execution
time. -
Q 3. What do you mean by polymorphism? (PTU, Dec. 2011, 2008)
Ans. Polymorphism is one of the most powerful feature of OOP language and is one of the
key feature that distinguishes an OOP language from other languages. Polymorphism allows a
programmer to design a highly generalised class with operations that are common to all classes
derived from the class and at the same time allow derived classes to add additional operations
specific to the derived classes. Thus, polymorphism gives a programmer the opportunity to design
a common interface based on a base class which dictates the general operation of the interface,
while derived class define multiple specialised operations. This is why polymorphism is frequently
referred to as ‘one interface, multiple method'.

Q 4. Explain the types of polymorphism.

Ans.

| Function overload

(PTU, Dec. 2011)

I Run time I

Y

| Virtual function |
Types of polymorphism in C++

pile time polymorphism in which a function name can operate in 8

- ¥
ing | ["Operator overloading |

(i) Compile time : A com

virtual Function and Polymorphism .

variety of different ways. Compile tim

A € polymorphism is of two types which are :
O Function overloading :

y It performs the different types of task using single function. _
O Operator overloading : Itis the process of making an operator to exhibit different behaviour
in different instances.

(i) Run time polymorphism :

! It exists when dynamic binding and inheritance combine. C++
support run-time polymorphism throug

h the use of pointer to derived class and virtual function.

Q Virtual function : When the form of a member function is changed at run time, that member
function is referred to as virtual function.

Q 5. What do you mean by pure virtual function?

Ans. If a virtual function is not defined in the base class in which it is first declared, then it is
referred to as pure virtual function. The declaration syntax of a pure virtual function is
Virtual return_type_specifier member function (/** =0 ;

Q 6. Why do we need virtual functions? Explain with the help of an example.
(PTU, May 2013)
aviour in the base

d provide their own, more specific behaviour.
guity (confusion) arise in C++ programming.

(PTU, May 2012)

Ans. Virtual function should be used when you want to provide default beh
class. The child classes can then override this function an

Virtual function is used to reduce or solve the ambi
For example :

Class Animal

{

public : virtual void say ()

{

// default behaviour
console.writeline (“Animal makes generic noise”) ;

}
b
Class Dog : Animal
{ .
public : override void say ()
{
Console.Writeline (“Dog barks”) ;
}
b

Virtual function works only in polymorphism.

Q7. What are the rules for virtual function?

Ans. The following are the rules for virtual functions :

1. The virtual function must be member function of some classes.

2. They cannot be static member of the class.

3. They can be friend function to another classes.

4. They are accessed using object pointer.

5. A virtual function is a base class must be defined even though it is not used.

6. The prototype of virtual function in the base class and derived class must be identical.

7. The class cannot have virtual constructor, but can contain a virtual destructor,

8. To realize the potential benefits of virtual functions supporting run-time polymorphism, t
should be declared in the public section of the class.

122 LO3DS Object Oriented Programming

Q 8. What do you mean by abstract class? (PTU, oec.;gg it'shg?"t’ 200g)
Ans. A class containing pure virtual functions cannot be used to define any wJork . 0' S Own,
Such classes are called abstract classes. Abstract classes can be used as a frame PON whict,
new classes can be built to provide a new function.
. What are the virtual destructor?)
. 2nss.uiran object (with a non-virtual destructor) is destroyed explicitly applying the delete operapg,
to a base-class pointer to the object, the base class destructor function (matching pointer type) is
called on the object. There is a simple solution to this pioblem, declare a virtual base-class destructor.
This makes all derived class destructor virtual even though they don't have the same name as the
base class destructor, if the object in the hierarchy is destroyed explicitly by applylng the deletg
operator to a base-class pointer to a derived class object, the destructor for the appropriate Class jg
called. ok
Q10. Can we make a destructor virtual? What purpose a virtual destructor will serve?
. Ans. Yes, we can make a destructor virtual. We can make destructor of base class as virtug|,
This makes all derived class destructors virtual even they do not have the same name as the bage
class destructor, Now, if the object in the hierarchy is destroyed explicitly by applying a delete Operator
lo abase class pointer to the derived class object, the destructor forthe appropriate class is invokeq
The base class destructor automatically executed after the derived class destructor.
Q 11. Can we make a constructor virtual? If not, why?

Ans. Constructor cannot be virtual. Declaring a constructor :as avirtual is a syntax error, The

reason why constructors cannot be virtual is that virtual mechanism works on objects, an object
exists only after the successful execution of constructor.

Q 12. What is virtual function?
need for virtual function.

Ans. Virtual Function :
keyword is known as virtual fun
and they provide a mechanism by which the derived

dynamically. The syntax for defining a virtual function is
Classs ABC

{

Private ;

How we can declare the virtual function? Also explain the

A member function whose fu nction declaration is preceded by virtual

Public ;
Virtual return type function name (arguments)

{
. //body of the virtual function

Declaring function virtual
Let us define a class CREATURES
Class CREATURES

{

Public :
char name [40] ;
CREATURES (char » P);

virtual Function and Polymorphism 123

void virtual move () ;

i

We have added keyword virtual to the base class function move ().

Need of virtual function : Logically when a pointer is pointing to derived class object, method
from, the corresponding derived class should be executed. When the pointer in question is a bas.e
class pointer this is not lapping. Somehow the language must have a provision to circumvent this
difficulty. This calls for the concept of virtual function. If we declare such a function as virtual in the
base class then the problem sets solved.

Q 13. Differentiate between static and runtime polymorphism giving example.

_ (PTU, Dec. 2010)
Ans. Compile time polymor,

Here same function name
Function overloading

Void CompileTime (int param);

Void CompileTime (int param, int param);
Void CompileTime(double param);
CompileTime(10,20);

CompileTime(10.5);

Operator overloading

Default operator's works fine for built-in data types. However to use them on user defined data
types, User needs to implement their own Operators to operate on user defined object types.

Runtime polymorphism can be achieved using virtual functions.

In virtual function mechanism, any derived class function can be called using Base class

pointer. Function declared inside that particular class will be called of which object is assigned to base
class pointer.

Virtual void PrintClassName()

{ .

Cout << “LeveliDerived “ << endi

} .

I

Class LevelOneDerived : public Base
{

Virtual void PrintClassName()

Cout << “LevelOneDerived “ << end! :
Class LevelTwoDerived : public Base
Virtual void PrintClassName()

Cout << “LevelTwoDerived “ << end! :
Base *pBasePointer = NULL;
LevelOneDerived levelOneObiject;
LevelTwoDerived levelTwoObject;
pBasePointer = &baseObject;
pBasePointer->PrintClassName();
pBasePointer =&levelOneQbject;
pBasePointer->PrintClassName();
pBasePointer =&levelTwoObject;
pBasePointer->PrntClassName():

Phism is achieved using Operator and function.
can be used for different functions with argument differences.

124

LO3ID> Object Oriented Prog ramming

Q 14, Wha.t_;s the concept of late binding? How the pointers play role to achieve late
binding? ' (PTU, Dec. 200

OR
What is the concept of late binding? Discuss the role of the pointers to achieve |ae
bindings. Explain the concept with the help of an example. (PTU, Dec. 2011)
Ans. Late Binding : When it is appropriate that member function could be selected while the
program s running. At run time, when itis known what objects are under consideration the appropriate
version of member is invoked. This is known as run time polymorphism. Since the function is linkeg
with a particular class after the compilation i.e. during program execution, the process is called Igtg
binding.
Pointers help in late binding : Run time polymorphism is achieved using following steps -
O preceding the member function with keyword virtual in base class

O accessing the member function through a pointer of base class.
Example :

#include <iostream.h>
class Base
i
private :
inta;
public :
base () {}
base (int n)

{
}

virtual void show () {

cout <<"display method of base class" 3
cout << a;

}

a=n;

h
class derived : public base
{
private :
intb;
public :
derived () {}
derived (int n) {
b= n;
}
void show () {

cout <<"Display method of deriv
cout<<a<<b;

}

ed class" ;

¥3

void main ()

virtual Function and Polymorphism

125

base *ptr:
base obj (5) ;
ptr = &obj ;
ptr — show () ;
derived obj1 (10);
ptr = &obj1 ;
ptr — show () ;

} :

In above program, all calls to show (

) member functions are resolved at execution time, where
as for other functions, still all calls are res

olved at compilation time.
Q 15. Elucidate the concept of early binding with respect to constructor function.

(PTU, Dec. 2008 ; May 2008)
and type of arguments in available the compiler at the
time of compilation. Therefore, the compiler is able to select the appropriate function for particular call

at the compile time itself. This is called early binding or static binding. It is early in the sense that a
function definition is bound to its call at the compile time and static in the sense that this binding
cannot be changed at execution time.

Constructor is a member function who is used to initialize an object of a class when it is
created. Its name is same as that of its class. A constructor is automatically invoked when an object

of its associated class is created. It is class constructor because it constructs objects with its initial
state by assigning initial values to its data members. An object of the class is created during compilation
which automatically calls its constructor functions which intialize data members of that class for that
particular object. It is known as early binding.

Ans. The information about the number

Q 16. Distinguish between virtual functions and pure virtual functions. (PTU, May 2019)
OR

pure virtual functions? Explain the use of having abstract

"~ (PTU, May 2012)

eceded by virtua

class in the public

These functions are

What are virtual functions and
classes.

Ans. Virtual function : A member function whose function declaration is pr
keyword is known as a virtual function. These functions are defined in a base
section and they provide a mechanism by which the derived class can override it
bound dynamically. The syntax for defining a virtual function is :

class ABC

{
private :

Virtual return type function name (arguments) -
{ _
weeeeeeen 1/ DOdY of the virtual function
}
! _
At run time, it allows to decide which overridden form of th
type of object pointed by the base pointer rather than the type of
pure virtual function :

Sometime virtual functions are declared without any body i.e. they don't have any defini

e function is to used based on
derived pointer,

ey |

126 LO3ID> Object Oriented Programming

2 . - : led > "
Such virtual functions are called pure virtual functions. These functions aré also called do nOthlng
functions. The syntax of pure virtual function is :
class ABC

private :

Virtual returntype function Name (arguments) =0 ;
L:—:y derived class of a base class containing pure virtual functions must either define these

functions or re-declare them as pure virtual function.

Q 17. How does C++ uses concept of reusability? Write a program in C++toillustrate yge

of polymorphism. , (PTU, May 2012)

Ans. In OOP, the concept of inheritance provides the idea of reusability. This means that we
can add additional features to an existing class without medifying it. This is possible by deriving a neyw
class from the existing one. The new class will have the combined features of both the classes. The
real appeal and power of the inheritance mechanism is that is allowed the programmer to reuse g
class that is almost, but not exactly what he wants, and to tailor the class in such a way that it does
not introduce any undesirable side effects into the rest of the classes.

Polymorphism : Polymorphism means ability to take more than one form. An operation ma
exhibit different behaviour in different instances. The behaviour depends upon the type of data usedin
the operation. Polymorphism is of two types complie time and runtime polymorphism. Early binding
simply means that an object is bound to its function call at compile time.

Now let us consider a situation where the function name and prototype is the same in both the

base and derived classes. For example, consider the following class definition :
Class A

{

int x ;

public :

void show () {.......} //show () in base class

Class B : Public A

{

inty;

public :

void show () {.......} //show () in derived class

Q 18. What is a virtual member function? Explain with example.

. . : (PTU, Dec. 2013)
Ans. A virtual member function is a member function preceded by the ke

: i p J yword virtual or a
member funClIEn with the same signature as a virtual function declared in a base class. In this context
vitual means “overridable”. More specifically, the keyword virtual means that the runtime system
automatically invokes the praper member functi

on when it is overridden b amic
binding). ya de.rived class (dyn

_ Amember function should be made virtual when there will be derived classes that will need to
provide their own implementation for the member function. This doesn't require as much clairvoyance

yirtual Function and Polymorphism -

as it seems to imply. Normally the virtual function represent specifically architected places where
extensibility is supposed to take place. Overriding a virtual member function is also straight forward ;
simply declare the member function in the derived class and define a new implementation for that

member function.

Q 19. Give an example where virtual functions are hierarchical.
Ans. #include <iostreams

class base {

public;

virtual void vfunc (){

;:oul <<"This is derived is v func ().\n™;
h

class derived? : public base{

public :

void vfunc () {

t}:out <<"This is derived is vfunc ().\n":
K

class derived 2 : public base {

public :

/I v func () not overridden by derived 2;
base's is used

K

int main ()

base * p, b;
derivedi d1;
derived 2 d2;
P = &b;

P — vfunc ();
p = &d1;

p — viunc ();
p = &d2;

p — viunc ();
return O;

Q 20. Explain virtual function. inheritance with example.

Ans. In C + +, once a member function is declared as a virtual funct

10N In a base class, |

becomes virtual in every class derived from that base class. In

_ . ; other words, it is not necessary to us:
the keyword virtual in the derived class while declarin

‘ g redefined version of the virtual base clas
function
e.g. #include <iostream>
class A {
public :

virtual void fun ()

{ cout <<"\n A : : fun () called™;)
h
class B : public A
{

ey SR —;u-uluung

public:
void fun ()

{
cout <<"\n B : : fun () Called " ; }

(}SIass C : public
public;
void fun ()
{cout<<"\nC ::
k
int main ()
{
Cc;
B*'b=_&C;
b— fun ();
getchar ();
}
Q 21. How a virtual fu

B{

fun () Called” ; }

nction is called through a class reference.

Ans. #include <iostream>

Class Base
{

int x;
public:

virtual void fun () = 0;
intget x () { returnx;}

Class Derived : public Base

{

int y;

public :

void fun () { cout

i;1t main (void)
Derived d;

d.fun ();
return 0;

<<"fun () called *; }

Q 22, What are the different wafs to achievé the polymorphism in C++? E int ure
polymorphism with example. i > (;$$3I3;2e2%1 4)
Ans. The following are the different ways of achieving polymorphism : ’ .

O Function Overloading SRS
QO Operator Overloading

Q Dynamic Binding

Pure Polymorphism : This capability also called parametric overloading, is provided in C++
by the evocation of the same name with different signatures inside the class scope. Pure polymorphism
within a class is implemented by creating several methods with different signatures. Based on static

binding, a parametric overload
the arguments in an invocation

ed member function is recognized by the number, types and order of

yirtual Function and Polymorphism 129

e

- In C++, pure polymorphism is achieved through inheritance and virtual functions.Pure

polymorphism occurs when a single function can be applied to arguments of a variety of type. In pure
polymorphism, there is one function (code body) and a number of interpretations.

Other words, we can also say that many authors reserve the term polymorphism (or pure

polymorphism) for sﬂgatpns where one function can be used with a variety of arguments, and the
term overloading for situations where there are multiple functions all defined with a single name. Such
faciﬂt_ges are not res_tncted tp object-oriented languages. In Lisp or ML, for examplé, it is easy to write
functions that manlpl._llate lists of arbitrary elements; such functions are polymorphic, because the
type of ths:;‘ argument is not known at the time the function is defined. The ability to form polymorphic
functions is one of the most powerful techniques in object oriented programming. It permits code to be
written once, at a high level of abstraction, and to be tailored as necessary to fit a variety of situations.
Usually, the programmer accomplishes this tailoring by sending further messages to the receiver for
the method. These subsequent messages often are not associated with the class at the level of the

lymorphic method, but rather are deferred methods defined in the lower classes.

Q 23. Differentiate between the term Dynamic and static memory allocation.

(PTU, May 2015)

Ans. Dynamic and static memory allocation ;

Static allocation means that the memory for your variables is automatically allocated either on
the stack or in other sections of your program. You do not have to reserve extra memory using them
but on the otherhand have also no control over the lifetime of this memory.

e.g. a variable in a function is only there until the function finishes.

Vdd func ()

inti; /"' only exists during ‘func'/.

}

Dynamic memory allocation is a bit different. You now control the exact size and the lifetime
of these memory locations. If you don't free it, you'll run into memory leaks, which may cause your
application to crash since it, at same point cannot allocate more memory.

int * func ()

{

int * mem = malloc (1024);
return mem ;

int* mem = func ();

In the upper example, the allocated memory is still valid and accessible, even though th
function terminated. When you are done with the memory, you have to free it.

Q 24. Explain the use of get and put pointer in file handling. (PTU, May 201¢€

Ans. Each file has two associated pointers known as the file pointers. One of them is calle

the input pointer or get pointer and the other is called the output pointer or put pointer. We can us
these pointers to move through the files while reading or writing. The input pointer is used f
reading the contents of a given file location and the output pointer is used for wirting to a given f
location. Each time an input or output operation takes place the appropriate pointer is automatica

advanced.
Q 25. What are dangling pointers ? Give example. (PTU, Dec. 20

Ans. Dangling pointers : The most common pointer error is to use a pointer that has not b
initialized, or that has already been deleted. Such a pointer is calied a dangling pointer, becau:
does point somewhere, just notto a valid object. You can create real damage by writing the locz

to which it points.

LORDS Opject VIr= = 7 ouramm;

130 t has been deleteq,

We can also say that in this, the user tries to use the pointer after I
int *x = new int (12); ‘
*q *=* q; /ffind the square of value i.e. 144
delete q; /q pointer has been deleted. _
*q; /Error. q has become dangling pointer. — .
Q;(;u:::a? is the difference between ad-hoc and universal POIY"‘OTP'“S';‘F;T%IS;:;Z ‘(':;lh
- Wha! ; ¢
Ip of a suitable example. .) (.
the h;l:l:_ Polymorphism refers to the multiplicity of meanings attachgd tof al:d:mﬁﬁzﬁzglﬁmmphm
stands for ‘of many forms’. A polymorphic language selects an operation fro ased gn

its object's type.
|
Coercion l Overloading] | Inclusion |

Adhoc Polymorphism : Adhoc polymorphism is obtained when a function works or appears to
work, on several different types and may behave in unrelated ways for each type.

(i) Coercion : Coerscion covers convertible in argument type to match the type of a corresponding
function parameter. It is a semantic operation to avoid a type error. If the compiler encounters 3
mismatch between the type of an argument and the type of the corresponding parameter, the language
allows conversion from the type of the argument to the type of the corresponding parameter. The

. function definition itself only ever executes on one type that of its parameter. C++ implements coercion
« ‘gt complie time. If a complier succeeds in matching the type of an argument to the type of the
corresponding parameter in the function call, the compiler inserts the conversion.
Code immediately before the functions call.
Coercion may
QO narrow the argument type
QO widen the argument type
Fore.g. #include <iostream>
void display (inta) const {
std : : cout << “one argument (“<<a <<")
}
int main ()
{
display (10);
std : : cout << std : : endl;
display (12,6);
std : : cout <<,std : : end];
display (‘A’);
std : : cout << std : : endl;

}
P et o:ﬁ?mpa'"gm“"e"m Accepted variations in a function's definition to match the
function Kentfir with a ;:gm;g, of function g & @ Syntacic abbreviation that associates the sam®
definitions by distinguishing its parameter sets. The same

Virtual Function and Folymorphism 131

function name can be used with a variety of unrelated argument types. Each set of argument types has its

own function definition. The compiler binds the function call to the matching function definition.
e.g. #include <oistreams

void display ()
const {
std : : cout << “No arguments”™;

void display (int a) const

std : : cout << “one argument (<< a<<™);
}

int main ()

display ();

std : : cout << std : : endl;
display (10);

std : : cout << std : : enld;

Universal Polymorphism : Universal polymorphism is true polymorphism. lts polymorphis
character survives at closer scrutiny. Universal polymorphism imposes no restriction on the admissibl
types. The same function applies to a potentially unlimited range of different types.

Inclusion : Inclusion polymorphism covers selection of a member function definition from a se
of definitions based on an object's type. The type is one of the types belonging to an inheritanc:
hierarchy. The term inclusion refers to one type including another type within the hierarchy. All functio
definitions share the same name throughout the hierarchy.

Parametric : Parametric polymorphism covers definitions that share identical logic independent
of type. The logic is common to all possible types without restriction. The types need not be related i
any way. For example, a function that sorts in its uses the same logic as a function that sort
doubles. C++ implements parametric polymorphism at compile time using template syntax.

Q 27, Discuss pointer arithmetic of C++ with examples. (PTU, Dec. 201!

Ans. As a pointer holds the memory address of a variable, some arithmetic operations can £

performed with pointers. C++ supports four arithmetic operators that can be used with pointers, such :
Addition + -

Subtraction —
Incrementation ++
Decrementation — -
“Pointers are variables. They are not integers but they can be displayed as unsigned intege
The conversion specifier for a pointer is added and subtracted.
E:: * +> it causes the pointer to be incremented/decremented, but not by 1.
The integer value would occupy bytes 2000 and 2001
int value, + ptr;
value = 120;
ptr = &value;
ptr + +;
cout <<ptr,
It will display 2002.

aQa

Basics of exception handling, exception handling mechanism, throwing mechanirsm, catching
mechanism, I/O System Basics, File I/O: Exception handling fundamentals, Exception handlin,

options. C++ stream classes, Formatted 1/0, fstream and the File classes, Opening and c|
a file, Reading and writing text files.

Chapter

Exception Hcmdling
—9

aﬁng

RA%ggngg

= 4Or exception handling provides a

=
=

=

=
=

=

=

{

fault in input data.

Asynchronous exceptions caused b
control of the program.

Exception handling is built upon three keywords : try, catch and throw.

The purpose of the exception handing mechanism is to provide means to detect and report an

“exceptional circumstance” so that appropriate action

The keyword try is used to preface a block of stateme

block of statement is known as try block.

¥ When an exception is detected, it is thrown

% Acatch block defined by keyword catch ‘catches’ the exception ‘thrown’ by the throw statement
in the try block and handles it appropriately.

The general form of using an exception specifications is
type function (org_list) throw (type_list)

——]

LPOIINTS TO REMEMBER @‘

In C++ errors can be divided into two categories : compile time errors and run time errors,
Compile time errors are syntactic errors which occurs during the writing of the program,

The logic errors occur due to the poor understanding of the problem and solution Procedures,
Logical errors cause the unexpected or unwanted output.

Exceptions are runtime errors which a programmer usually does not except.
Exception occurs accidently which may result in abnormal termination of the program.

Exception handling mechanism is used to trapesception and running program smoothly after
«catching the exception.

type-safe, integrated approach, for copihg with the unusua|
predictable problems that arise while executing a program.

Exceptions are of two kinds : synchronous exce

_ ptions and asynchronous exceptions.
Synchronous exceptions are those which

occur during the program execution due to the some

y events or a fault unrelated to the program and beyond the

can be taken.
nts which may generate exceptions. This

using a throw statement in the try block.

132

Exceptlon natding

1=

=

R ®&RA% R A

&

FRARAAARARARRAR BE

g &

133
We can place two or more catch block together to catch and handle multiple type of exceptions
thrown by a try block. -
We may restrict a function to thr
specification clause to the functig
Input output function of C++ works with different physical devices. It also act as interface
between the user and the device.
Console I/O operations are used to acg
to standard output device,
A stream is a series of bytes that acts as a source and destination for data. The source stream
is called input stream and the destinal

tion stream is called output stream.
The cin, cout, cen and log are predefined stream.

The header file to stream.h must be include when we use cin and cout functions.
The istream and ostream are derived classes from iosbase class.

The formatting of output can be effectively done with mernber functions of ios class. The member

function width(), precision(), fill() and setf() allows user to design and display the output in
formatted form.

Ow only a set of specified exceptions by adding a throw
n definition,

eptinput from standard input device and direct the output

The putback() replaces the given character into the input stream. The member function igore,
ignores a number of given characters till it finds termination character.

Manipulators also help the user in formatting of output. The programmer can also create his/her
own manipulators.

The header file iomanip.h contains pre-defined manipulators.

A file is a collection of related information normally representing programs, both source and
object forms and data.

A stream is a general name given to a flow of data.

There are two type of streams input stream and output stream.
Input stream read the data from a disk file.

Output stream is used to write data into the file.
Files are either text files or binary files.

If stream is the class for input operation on files similar to standard input.

If stream includes the methods open (), close (), read (), get (). getline ().

Of stream is the class for output operation on files similar to the standard output.

Of stream methods are open (), close (), put (), write ()-

Fstream class derived from both ifstream and ofstream.

The function put () writes a single character to the associated stream.

The function get () reads a single character from the associated stream. ‘

Bad () function returns true if a failure occurs in a reading or writing operation.

The function fail () returns true in the same cases are bad () plus in case that a format error
happens, as trying to read an integer number and an alphabetical character is received.

eof () function returns true if a file opened for read]ng has reached th‘e enc.l. _

Good () function is the most generic : returns false in the same cases in which calling any of th
previous functions would return true.

The file management system associates two pointers with each file known as file pointers : inpt
pointer and output pointer.

A file accessed sequentially means that all the preceding data items how to be read and discard:
while accessing a particular data item.

In random access, the file pointer can directly reach the location of interest.

134

LO3D> Object Oriented Prc:gramn-,i,.,g

| QUESTIONS-ANSWERS |
Q 1. What is an exception?

(PTU, Dec. 201g
Ans. An exception is a problem that arises during the execution of a program. A C++ exceptiop,

is a response to an exceptional circumstance that aries while a program is running,
attempt to divide by zero. ‘

Exceptions provide a way to transfer control from one part of a program to another. C++ exception
handling is built upon three keywords : try, catch and throw.

Q 2, Explain the different types of exceptions.
Ans. The exception are of two kinds :
1. Synchronous Exception : The exceptions which occur during the program execution, dye
to some fault in input data, within the program, is known as synchronous exception.
2. Asychronous Exception : The exceptions caused by events or a fault unrelated to the
- program and beyond the control of the program is known as asychronous exception.

Q 3. Explain the meaning of keywords try, throw and catch.

Ans. Try : This keyword defines a boundary within which an exception can occur, A block of
code in which an exception may occur must be prefixed by this keyword.
Throw : Throw is used to raise an exception when an errors is generated in the computation it
initializes a temporary object to be used in throw.

. Catch : This keyword represents exception handler. It must be com
after the statements marked b
handler will only evaluate an
argument list,

such as ap

pulsorily used immediately
y try keyword. It can also occur immediately after catch keyword. Each

exception that matches or can be converted to the type specified in the

Q 4. What are the tasks to be performed by error handling code?
Ans. (a) Hit the exception : Detect the problem causing exception.
(b) Throw the exception : Inform that an error has occured.

(c) Catch the exception : Receive the error information.
(d) Handle the exception : Take corrective actions.

Q5. List the functions for handling un caught exceptions.
Ans, (a) Terminate () : It is invoked when an exception is raised and the handles is not found.
(b) Set_terminate () : Allows the user to install a function that defi

be taken to terminate the program when a handler for the exception can

(¢) Unexpected () : This function is called when a
exception specification.

(d) Set_unexpected () : It allows the user to install a function that defines the program’s
actions to be taken when a function throw an exception not listed in its exception specification.
Q 6. What do you mean b

nes the program’s actions to
not be found.
function throws an exception not listed in its

y rethrowing exceptions?
Ans. In some cases, an exception handler may process an exception, then either rethrow the
same exception or throw a different exc

‘ eption. If the handler wants to rethrow the current exception,
itcan just use the throw statement with no parameters. This instructs the compiler to take the current
exception object and throw it again. For e

Xample
catch (EintegerRange & range Err) {

/! code here to do'local handling for the exception
throw ; // rethrow the exception
}

gxception Handling

135

Q7. Write a short note on exception specification.

Ans. Itis possible to specify which exceptions a function may throw. It is run time error to throw
an exception of the wrong type past a function. The syntax for an exception specification is

exception specification :

throw (type-id-list) // type-id-list is optional

type-id-list :

type-id

type-id-list, type-id _

The following examples are functions that exception specification

void f1 () ; - /IThe function can throw any exception
void f2 () throw () ;//should not throw any exception
void f3 () throw (A, B*) ;

llcan throw exceptions publicly derived from A, or a pointer
to publically derived B.

Q 8. Write the steps to be performed when an exeebtion is raised.
Ans. 1. The program searches fora matching handier.

2. If a program is found, the stack is unwound to that point.
3. Program control is transferred to the handler.

4. If no handler is found, the program will invoke the terminate function if no exception are
thrown, the program executes in the normal fashion.

Q 9. What are the blocks used in the exception handling?

Ans. The exception handling mechanism uses three blocks -
1. Try block

2. Throw block
3. Catch block

The try block must be followed immediately by a handler, which is a catch block. If an exception
is thrown in the try block.

Q 10. Explain the advantages of using exception handling in a program. (PTU, May 2019)

Ans. Exception handling provides the following advantages :

1. Separating error handling code from “regular” one : Provides a way 1o separate the
details of what to do when something out of the ordinary happens from the normal logical flow of the
program code. : _

2. Propagating errors up the call stack : Lets the corrective action to be taken at the higher
level. This allow the corrective action to be taken in the method that calling that one where an error
occurs.

3. Grouping error type and error differentiation : Allows to create similar hierarchical structure
for exception handling so group them in logical way.

Q11. What are exceptions? What are two types of exceptions? Draw the exception handling
model.

Ans. Exception Har;dling : Exceptional handling is the process to h_andle the e_xception it
generated by the program at run time. The aim of exception handling is to write code which passes

exception generated to a routine which can handle the exception and can take suitable action. Any
exception handling mechanism must have the following steps.

Step 1. Writing exception class (optional)

Step 2. Writing try block ‘

Step 3. Throwing an exception ‘

Step 4. Catching and handling othe exception thrown.

136

LO3D> Object Oriented Prograrnn-unIg
tion Handling : The exception are of two kinds ; .
Tyg”:.':,ﬁ:ﬁ:': Exception : The exceptions which occur during the program-execution, dyg
. faﬂ; in input data, within the program, is known as synchronous exception.
N Son;e Asychronous Exception : The exceptions caused by events or a fault unrelated to the

program and beyond the control of the program is known as asychronous exception.
Exception Handling Model :

Try block

—— Perform operation which may throw
as invoke external function if needed.

l_ Invoke function having throw block
Throw block

exception if (failure)

Throw object:

exception
Catch block
Catches all exception thrown from
within try block or by function invoked
within and try block.

Q 12. Explain the syntax of try and catch block.

Ans. 1. Try Block : The exception is to be thrown is to be written in the try block. Whenever an
exception is generated in the try block, it is thrown. An exce
exception object is thrown. The thrown ke
of using the throw statement is as

throw exception ;
for throwing an exception and simply throw ;
For rethrowing or exception
The syntax of try block is as shown below :
try
{
statements ;
statements ;
statements ;
throw exception ;

ption is an object so we can say that an
yword is used for throwing or exception. The usual practice

} 3
2. The catch block : An exception thrown by try block is caught by the catch block. A try block
must have at |

east one catch, though there can be many catch block for catching different types of

exceptions. A catch block must have a try block prior written which will throw or exception. The catch
block is used as ;

try
{

statements ;

ti.D
gr_c:e-e—-—'_’_

statements ;
statements ;
throw exception ;

catch (object or argument)

statements for handling the exception ;

The catch block catches any exception thrown by the try block. If exception thrown matchl_::\:st
with the argument or object in the block, the statement written the catch block and we say t {?“
exception thrown by try block was caught successfully by thg catch block. After }he succes‘s 4
execution of the catch block statements, any statements following the catch I?Iock \NI.!'. be execu ;n
If argument does not match with the exception thrown, catch could not handle it and this may result i
abnormal program termination.

" Q13. Explain the exception handling mechanism with example. o

Ans. The try, throw and catch all together provide exception handling mechamsr_n in C++. The
exception is generated by the throw keyword which is written in ﬂ?e try block. ﬁ_\n exception gemera.leu:i1
within this try block is thrown using this throw keyword. Imrnediatelyf following the try block, catc
block is written. As soon as some run time errors occurs an exception is thrown by t_he try blockA using
throw which informs the catch block that an error has occured in thg try block. Th|‘s try block is a!so
known as exception generated block. The catch block is responsible for catching the execuno:
thrown by the try block. When try thrown an exception, the control of the program passes to the catc
block and if argument matches as explained earlier, exception is caught. In case no exception is

thrown the catch block is ignored and control passes to the next statement after the catch block.
For example : :

#include <iostream.h>

void main ()

{

try

{ 2]
throw “DEMO of exception” ;
}

caich (char *E)

{

cout <<“Exception caught=" <<E <<end! ;

}

cout <<“continue after catch block” <<end! ;

} - .

Q 14, Write a program to throwing in one function and catching in the other.
Ans.

#Include <iostream.h>

void divide {int a, int b}

{

if (b! =0)

cout <<"a/b=" <<a/b ;

else

e e, A W RS W

Lo3D> Object Oriented ngra’“'hing

138
throw b ;

}

int main (void)
try {

divide (4, 2) ;
divide (4, 0) ; }
caich (int X)

{
cout <<"Exception caught =" << X ;

}

return O ;

}

output a/b =2

Exception caught = 0.

Q 15. Explain the concept of catch all the exception in a single catch block.

Ans. In many real world programming situations we may not be able to predict all the possibje

types of exceptions and as a consequence, we will not be able to design independent catch block to

handle all the unforeseen exceptions. Fortunately, C++ provides a mechanism of handling this situation,
where in a single catch block would suffice to catch all the exceptions.

The syntax of the catch block is as follows :

catch (.....)

statements °

}

Program to catching all the exception in a single catch block
#include <iostream.h>
int main (void).

int X ;
cout <<"Enter a value for X \n” ;
Cin>> X
try -
P
Switch (X) -
{
Case 1:
throw‘a’
break ;
Case2;
throw X ;
break ;
Case 3:
throw (float X) ;
break ;
Case4:
throw “XYZ”

139

Exception Handling
preak ;

3}
Catch (....)

{ -
cout <<"Exception caught” ;

re{urn 05

}

Output : Entervalue of X

3

Exception caught. .
(PTU, May 2010, 2004)

Q 16. Discuss the exception handling features of C++7
Ans. Exception handling mechanism depends upon three keywords : try, throw and catch. The

keyword try is used to preface the block of statements that may generate exception. This block 9t
statements is known as try block. When an exception is detected, it is thrown using keyword throw in
the try block. A catch block that is defined by prefacing a block of statements with the catch keyword,
catches the exception thrown by the throw statement is the try block and handles it appropriately.

Following is the syntax :
Void main ()

........... // statements which can cause,
throw exception ;// detect and throw an exception

catch (datatype argument)

/] statements that handless
I the exception

}
As soon as the try block throws an exception, the program control leaves the try block and
enters the catch block. If the type of the object thrown matches the data type of the argument in the

catch statement, then catch block is executed for handling the exception.
Q 17. List the name for pre-defined streams in C++. -

Ans. Stream Meaning
Cin Standard input
Cout Standard output
Cerr Standard erroroutput
Clog Buffered version of cerr

P

sy

=SS UL TV rrugrarnn-.in

stream are used to communicate with the console.
Q 18. What is difference between get () and put () function? _
Ans. The get is used to read a character and put () is used to display th_e character g, the

Stream cin, cout and cerr correspond to C's stdin, stdout and stderr. By default, lm

screen. _

The get function has two syntaxes :

(a) get (char*) ;

(b) get (void) ; _

if syntax (a) is used, the get function assigns the read data to its argument, where
(b) is used, the get () function returns the data read. The data is assigned to the varia
left hand side of the assignment operator. Thus functions are members of I/O stream cl
be called using object.

Put function () : This function is used to display the string on the screen. It is a member of
ostream class. The syntax of put () is given below : :

(a) cout.put (‘A") (b) cout.put (X) ;
The statement (a) displays the characters ‘A’
contents of variable x on the screen.

as if Syntay
ble Present at
asses ang can

on the screen and the statement (b) displays the

Q 19. Explain the difference between getline () and write () function.

Ans. The getline() and write() functions are used with line oriented I/O. The setline function
reads a line of text terminated by ENTER key. For example :

chararr [21] ; !
cin.getline [arr, 21) ;
Here, arris an array of size 21 and can store 20 chara
n'is read, it is replaced by the null character in the array.
Write () : This function is used to dis
() but the function is exactly opposite. Th
cout.write (variable, size) ;
For example :
void main ()

cter at more. When the newline character

play the string on screen its format is the same as getline
e syntax is given below :

Gout.write (“INDIA”, 6) ;
cout.write (“IS”, 3) ;
cout.write (“Great”, 5) ;
}

Output : India is great.
Q 20. Explain the predefined stream ob
Ans. cerr : If we want to display
redirected to a file, we can use cerr

cerr <<ch ;

Each character ch will be sent to the scre
afile. The cerr object is normally used to displa
clog : This is another object. It is similar

jects cerr and clog. (PTU, May 2007)
a particular message even when output of program has been
object. e.g. inserting a line

en by cerr, even though the output to cout is going to
Yy error messages, hence the name.

to cerr except that its output is buffered while cerrs is
not.

Q 21. What are input/output stream in C++7? (PTU, May 2011 ; Dec. 2009, 2008)
Ans. The C++ I/O subsystem is designed to work with a wide variety of devices that includes
«eyboard, monitor etc. The C++ I/O subsystem is designed in such a way that it provides a uniform

Exception Handling

141

e being used. Thus, the programmer can write a C++
program that can receive input form, and send output to any device without bothering about the
characteristics of device being used. This interface is called a stream.

A stream basically is a sequence of bytes. It can either act as a source from which the program
can take input data or as a destination to which the program can send output data. The source stream

that supplies data ?0 the program is called input stream and the destination stream that receives data
from the program is called output stream. These streams are called data streams.

Q 22. List the name of 10S format functions.
Ans. Width () : To specify the required field size for displaying an output value.
Precision () : To specify the number of digits to be displayed after the decimal point of a float

interface that is independent of the actual devic,

value.

Fill () : To specify a character that is used to fill the unused portion of a field.

Setf () : To specify format flags that can control the form of output display.
Unsetf () : To clear the flags specified.

Q 23. What is manipulator?

Ans. The output formats can be controlled using manipulators. The header file iomanip.h has a
set of functions. Effect of these manipulator is the same as ios class member functions. Every ios
member function has two formats. One is used for setting and second format is used to know the

previous setting. But the manipulator does not return to the previous setting. The manipulator can be
used with cout () statement as given below :

cout << ml << m2 << V1 ;

Here m1 and m2 are two manipulators and V1 is any valid C++ variable.
Q 24. What is the syntax for creating manipulator?

Ans. Syntax of a manipulator without any argument

ostream & name-of-manipulator (ostream & output)

return output ;
}

Q 25. How manipulator is different from ios functions?

Ans. 1. ios function returns value while mgnipulalors does not "

2. We cannot create own ios functions while we can c_reate our own manipulators.

3. ios functions are single and not possible to be combined while manipulator are possible to be
applied in chain.) _) .

4. ios function needs <iostream> while mampul{ator needs <iomanip> ‘

5. ios function are member functions while manipulator are non-member functions.

2 t is stream? Explain the features of C++ st_ream. _ .

2:: gre:m : Stream is a sequence of bytes. It acts either us a source from which the input
datacan be obtained or as a destination to which the output data can be sent. The source stream that‘
provide data to the program is called input stream and the destination stream that recawesi, outpu
from the program is called the output stream. In other words a program ?x!racts the bytes from an
input stream and inserts bytes into an output stream as illustrates below :

=

Input stream .
SENRER o
Program
_ insertion intg
Output stream output
[emwamios | TTT LT LTI ™t
. Data stream

Input stream : Input streams are used to hold input from a data prof Iuctir‘ o8 k.eyboard
file or a network. For example, the user may press key on the keyboard w e ;3_ p:ogram is cury X
not expecting any input. Rather than ignore the users keypress, the data is put into an inpyt Streap,
where it will wait until the program is ready for it.
Output stream are used to hold output for a particular data consumer, such as
or a pointer. When writing data to an output device, the device may not be ready to
yet. For example, the printer may still be warming up when tht_? program \{vnte: d
stream. The data will sit in the output stream until the printer begins consuming it.
Advantages of /O stream : Althrough input/output are implemented with stream for both ¢ and
C++, the C++ I/O stream classes provide the same facilitites for input and output as C stdio.h. They
O stream classes in the standard C++ library have the following advantages:

1. Theinput (>>) operator and output (<<) operator are type safe. These operators are easigr
to use than scanf () and printf ().

2. You can overload the input and output operators to define input and out

types and classes. This makes input and out
Q 27. Explain standard stream in C++ withe
Ans. A standard stream in a

environment, C++ comes with four p
for your use.

18

a Monitor, a
accept that datg
ata to jt's Outpy

put for your owp
putacross types, including your own, uniform,

Xample.
pre-connected stream provided to a com

puter program by it's
redefined standard stream objects that hav.

e already been setuyp
1.Cin: An istream_withassign class tied to the stand and input (typically the keyboard).
2.Cout: An ostream_withassign class tied to the standard output (typically the monitor).
3.Cerr: An ostream_withassign class tied to the standard error (typically the monitar).
4. Clog : An ostream_withassign class tied to the standard error (typically the monitor), providing
buffered output.

standard streams.
For example

#include <iostream.h>
int main ()

using namespace std -
cout <<“Enter your a
int nage ;

cin >> nage ;

ge:"<<end/;

EXCCHLIVE | IEV TS

143
if (nage <'= 0)
{

cerr << “00Ps

! » You entered an invalid age!"<<end/;
exit (1) ;

cout <<"you entered” <<

Nage <<“yearold”" << end /:
return0;

stream classes for definj
and for doing input output Operations, A
stream classes are as follows *

1. ios class is the topmost class in the stream classes hierarchy. It is the base class for
istream, ostream and streambuf class.

2. istream, ostream serves the base cl
input and ostream for output.

3. Classiosis indirectly to iostream class using istream and ostream. To avoid the duplicity
of data and member functions of ios class, itis declared as virtual base class when inheriting
in istream and ostream as :

Class istream : virtual public ios
{ -
b

Class ostream : virtual public ios
{
}

4. The_withassign classes are provided w
that's. why — withassign classes.

Facilities provided by stream classes:

1.Theiosclass: ltis responsible for providing all input and output facilities to all other stream
classes as it is the top most class in the hierarchy of stream classes seeing. This class provides
number of functions for efficient handling of formatted output for strings and numbers.

2, The istream class : This class is responsible for handling input stream. it provides number
of functions for handling chars, strings and objects, record etc. besides inheriting the properites from
ios class. The istream class provides the basic capability for sequential and random access input. An
istream object has a streambuf derived object attached, and the two classes work together. The
istream class does the formatting and

the streambuf class does the low level buffered input. The
class provides number of methods for input handling such as get, getline, read, peek, gcount, ignore,
eatwhile, putback etc. This class also contains overloaded extraction operator >> for handling all data

types such as int, signed int, char, long, double, float, long double. The extraction operator is also
overloaded for handling stream buf and istream types of objects.

3. The istream_withassign class is a variant istream that allows object assignment. The
predefined object cin is an object of this class and thus may be reassigned at run time to a differen
istream class. _))) '

4. ostream_withassign class is a variant of ostream that aliow object assignment. The predefinet
object cout, cerr and clog are objects of this class and thus may be reassigned at run time to |
different ostream object.

asses foriostream class. The class istream is used for

ith extra functionality for the assignment operations

144 LORD> Object Oriented ngramming

Q 29. Write a program to overload << and >> operator to the object of a class.

Ans. #include <iostream.h>
class complex

double real, imag ;
Public :
complex ()

{
}

complex (double r, double i)
{
real=r;
imag = ;
}
Friend ostream & operator << (ostream &S, complex &C);
Friend istream & operator >> (istream &S, complex &C) ;

ostream & operator <<ostream &S, complex &C)

{

S << “(“<<C. real <<", “<<C.imag <<")":

retun S ;

}

istream & operator >> (istream &S, complex &C) ;
{

S>> C.real >> C.imag ;

return S ;

}

void main ()

complex C1 (1.5, 2,5), C2 (3.5, 4,5), C3:
cout << end/ << "C1 = "<<C1 << end / << "C2="<<C2;
cout << end/ <<"Enter a complex number : ;
cin>>C3;
cout <<"C3 =" <<C3;
}
Q 30. Explain the concept of designing our own manipulators.
Ans. We can design our own manipulators for certain special purpose. The general form for
creating a manipulator without any argument is :
ostream & manipulator (ostream & output)

. return output;

exception Handling 145

Here, the manipulator is the name of the manipulator under creation. The following functions
defines a manipulator called unit that displays ‘inches’ :
ostream & unit (ostream &output)

{

output << “inches” :
return output ;
!I'he statement
cout <<36<< unit ;
will produce the following output
36 inches. _
We can also create manipulator that could represent a sequence of operation. Example
ostream & show (ostream & output)
{
output.setf (ios : : show point) ;
output.setf (ios : : show pos) ;
output << setw (10) ;
return output ;
}
This function defines a manipulators called show that turns onthe flag show point and showpos
declared in the class ios and sets the field width to 10.
Q 31. Write the syntax of write () and read () functions.
Ans. Syntax of write function :
of stream_obj.write ((char*) & var, size of (var));
Syntax of read function :
if stream_obj.read ((char*) & var, size of (var));

Q 32. How getline () function is different gets ()?

Ans. The purpose of getline function for inputting multiple strings except that it removes the
delimiter character from the input stream. This function is similar to gets () function but in getline we
can specify the terminating character also which is not available in gets function e.g.

cin.getline (str, max, *) ; this statement on execution can input multiple lines until either enter
the terminating character ' or until user exceeds the size of the array.

Q 33. What is a structure? How is it different from class?

Ans. A data structure is a group of data elements grouped together under one name. These
data elements, known as members, can have different types and different lengths. Data structures
are declared in C++ using the following syntax : i

struct structure_name

{

member_type1 member_name 1;
member_type2 member_name 2;

} object_names; .
Where structure_name is a name for the structure type, object_name can be a set of valid

identifiers for objects that have the type of this structure. Within braces { }there is a list with the date
members, each one is specified with a type and a valid identifier as its name.

146 LO3ID> Object Oriented Programming

For example :
struct product

int weight;
float price;
|
product apple;
product banana, melon;
The only difference between a structure and a class in C++ is that, by default the members of
class are private while, by default the members of structy re are public.

Q 34. Differentiate between << & >> oOperators,

Ans. <<is called insertion and >> is called extraction. These operators are use to write information
to or read information from respectively, ostream and istream objects and to all classes derived from
these classes. By default white space is skipped when the insertion and extraction operator are used.
Also insertion operator (<<) points to the ostream object wherein the information is inserted. The
extraction operator points to the object receiving the information obtained from the istream object.

* Q 35. Write a short note on file.

Ans. A file is a collection of related information normally representing programs, both source
and object forms and data. Data may be numeric, alphabetic or alphanumeric. A file can also be
defined as a sequence of bits, bytes, lines or records whose meaning is defined by the programmes
operations such as create, open, read and close are performed on files.

@ 36. Define Streams. What are various types of streams? (PTU, May 2007)

Ans. The C++ I/O subsystem is designed to work with a wide variety of devices that includes
keyboard, monitor etc. The C++ /O subsystem is designed in such a way that it provides a uniform

. interface that is independent of the actual device being used. A programmer can write a C++ program
that can receive input from and send output to any device without bothering about the characteristics
of device being used. This interface is called stream. Following are the types of streams.
1. Standard input stream : Represented by an object cin of istream class, is the stream from
which input is received.

2. Output stream : Represented by an object cout of ostream class, is the stream to which
output is sent.

3. Error stream : Represented by an object cerr of ostream, class is the stream to which error
messages are sent. '

Q 37. List various VO stream flags and syntactic rule governing them.

. (PTU, May 2009)
Ans. Various /O stream flags are :
Flag Purpose

1. skipws skip whitespace on input.

2. left left justify output

3. right right justify output

4. internal use padding after sign or base indicator
5. dec decimal conversion

6. oct octal conversion
7. showbase. hexadecimal covnersion
8. showbase uge base indicator on output
9. showpoint. use decimal point in floating point output

E)(CEPtiDn Handling 147
10. uppercase uppercase hex output
11. showpos Preface positive integers with'f
12. unitbuf flush all streams after insertion
13. stdio flush stdout and stderr after insertion

Rules : Following are the rules for governing them,

1. Reset the skipws flag when getting input from cin in REDIR because in no i
A rmally skips ov
white space, which includes spaces, newlines and EQFs, T

2. To redirect a program'’s input so that it comes from a file and not the keyboard, you can use

<oper ator. .
Q 38. Draw the hierarchical diagram of file stream classes.

Ans.
. : Pointer
E‘LE T
F 3 Y

=5
Lfstr:am] Lofstji'eam—l [filebuf |

Hierarchy of file stream classes

Q 39. What do you mean by file positioning function? Discuss. (PTU, Dec. 2007)

Ans. Each file object has associated with it two integer values called the get pointer and the put
pointer. These are also called the current get position and the current put position. These values
specify the byte number in the file where writing or reading will take place.

Sometimes you want o start reading an existing file at the beginning and continue until the end.
When writing, you may want to start at the begining, deleting and existing contents or at the end. For
all these purposes file positioning functions work. Sometimes you take control of the file pointers so
:hat you can read from and write to an arbitrary location in the file. Following are the file positioning
unctions :

1. Seekg () and tellg () : These functions allow you to set and examine the get pointer. The
seekg () function set it to the beginning of the file so that reading would start there. This form of seekg
() takes one argument, which represents the absolute position in the file. And the telig () function
returns the current position to the get pointer. The program uses this function to retum the pointer
Position at the end of the file.-This is the length of the file in bytes. _

2. Seekp () and tellp () : These functions perform these same actions on the put pointer.

Q 40. Explain the predefined stream objects cerr and clog. (PTU, May 2007)

Ans. cerr : If we want to display a particular message even when output of program has been
fedirected to a file, we can use cerr object. e.g. inserting a line

cerr <<ch ;

148 LO3ID) Object Oriented Programming

Each character ch will be sent to the screen by cerr, even though the output to cout is going to
a file. The cerr object is normally used to display error messages, hence the name.

clog : This is another object. It is similar to cerr except that its output is buffered while cerrg is
not.

Q 41. What do you mean by file pointer?

Ans. Each file has two associated pointers known as ihe file pointers. One of them is called thg
input pointer and the other is called the output pointer. We can use these pointers to move through the
files while reading or writing. The input pointer is used for reading the contents of a given file location,
and the output pointeris !Jsed for writingto a given file location, Each time an input or output Operation

takes place, the appropriate pointer is automatically advanced.
Q 42. Explain the syntactic rules for the followin
(i) seekg
(ii) seekp
(iii) tellg
(iv) tellp
Ans. (i) seekg : Its syntax is
ifstream & seekg (long offset, seek_dir origin = ios :: beg) ;
Where offset specifies number of bytes by which file pointer to be moved ; origin specifies the

reference point from where the offset is to measured, default argument with default value beginning of
the file as reference point.

(ii) seekp : It syntax is
ofstream & seekp (long offset, seek_dir origin = ios :: beg) ;
where offset, origin, default argument are same as seekg.
(iii) tellg : ‘
longtellg () ;
It return the current position as number of bytes from the beginning of the respective files.
(iv) tellp :
long tellp ();

ltalso returns the current position as number of bytes from the beginning of the respective files.

Q 43. What do you mean by closing a file?

Ans. When reading and writing or consulting operations on a file are complete we must close it
so that it becomes available again. In order to do that we shall call the member functions close (), that
is in change of flusting the buffers and closing the file. Its form is quite simple :

void close () ;

For example :

#include <iostream.h>

using namespace std ;

int main () {

of stream outfile ;

outfile.open (“test.txt”, ofstream : : out 1 ofstream : : app) ;
outfile << This sentence is appended to the file content \n" ;
ouffile.close ();
return0;

}

g random access member functions

(PTU, May 2005)

Exﬂeption Haﬂd'lng
Q 44. Explain the hierarchy of file system classes
An. The /O system of C++ contains a set of classe i i i
- o Ty e asses the define the file handing method.s
1. ifstream — for handling input files.
2. ofstream — for handling output files, ;
3. fstream — for handling files on which both inpui ando
: output can b
These ciasses_arell derived from fstream base and frompthose d:c?:rr;zr?:ﬁ’ﬁ h
iostream-h as shown in figure. -
The classes ifstream, ofstream and fstream are designed e i .
' m, cl isk:
and their declarations exist in the header file fstream.h, ’ TRy -

149

& : Poi
108 L streambuf
iostream.h istream streambuf
file + Y
]streambufl
L l [A 4
ifstream fstream | ofstream] filebuf
fstream.h L— Lo |] |
file
fstream base

Hierarchy of file stream classes
1. Fileup : Its purpose isto set the file buffers to read and write. Contains openprot constant used
inthe open () of the stream classes. Also contains close () and open () as members.
2. Fstreambase : Provides operations common to the file streams. Serves as a base for
stream, ifstream and ofstream classes. Contains open () and close () functions.
_ 3. lfstream : Provides input operations. Contains open () with default input mode. inherits the
functions get () ; get line (), read (), seeks () and tellg () functions from istream.
4. Ofstream : Provides output operation. Contains open () with default output mode. Inherits
Put (), seekp (), tellp (), and write (), function from ostream.
5. fstream : Provides support for simultaneous input and output operations. Contains open ()
efault input mode. Inherits all the functions from istream and astream classes through iostream.
Q 45. What are the different modes in which files can be opened? Explain with example.
(PTU, May 2012, 2011, 2009 ; Dec. 2009)

with d

: OR
Describe different file opening modes in C++.
OR
What are the two methods of opening a file? Explain with examples. In which case, the
Wo methods are used with the advantages. (PTU, May 2006
Ans. A file can be opened in two ways : _ e
1. Opening a file using constructor : Constructor is used to initialize an object while it is beiry

(PTU, Dec. 2011, 2008 ; May 2019, 2008)

150 LO3D> Object Oriented Programming

created. Here, filename is used as an argument for the constructor, which is then used to initializaﬂ
the file stream object. The prototype of ifstream class is
ifstream (const char *path, int mode = ios : : in
int prot = file buf : : open prot) ;
and for ofstream class is
ofstream (const char * path, int mode = jos : - out,
int prot = file buf : : open prot) ;
~ where path is filename with path information,
default value ‘in’ for input mode for ifstream class a
e.g. #include <fstream.h>
void main ()

mode is file opening mod, default argument with
nd cout for output mode, prot is access specifier

ofstream outfile ("ABC.TXT ")
outfile <<"This is object.oriented programming" ;
outfile <<"This is written in file" ;
} .

Advantages : In this type initialization sets aside various resources for the file and accesses
the file of that name on the disk. When the Pprogram terminates, the outfile object goes out of scope,
This calls destructor, which closes a file, so we don't need to close the file explicity.

2. Opening a file using open () member function : The prototype of open () functions is
void open const char * path, int mode,

" int prot = filebuf : : open prot) ;
and open () function is invoked on a file stream object as
file-stream-object.open ("filename”, mode) ;
eg. ifstream infile ;
infile.open ("ABC.dat" , ios : : in) ;

open a file ABC.dat in text mode for input only with read and write permissions.

Advantages : The open () function allows several mode bits to specify file object that we are

. opening. In and out are used to perform input and output on the file. The vertical bars between the

flags cause the bits representing these flags to be logically ORed together, so that several flags can
apply simultaneously. -

Q 46. Explain the error handling during file operations.

Ans. So far we have been opening and using the files for reading and writing on the assumption
that everything is fine with the files. This may not be true always. For instance, one of the following
things may happen when dealing with the files :

1. A file which we are attempting to open for reading doe not exist.

2. The file name used for a new file may already exist. _

3. We may attempt or invalid operation such as reading past the end-of-file,

4. There may not be any space in the disk for storing more data.

5. We may use an invalid file name.

6. We may attempt to perform an operation when the file is not opened for that purpose.

The C++ file stream inherits a ‘stream-state’ member from the class ios. This member records
information on the status of a file that is being currently used. The stream state member uses bit
fields to store the status of the error conditions stated above.

The class ios supports several member functions that can be used to read the status recorded
in a file, stream. These functions are given below.

ion Handlin
Exception . 151

otherwise

(i) eof () : Returns true (non-zero value) if end-of-file is encou i i
return false (zero). . _ countered while reading,

(ii) fail () : Return true when an input as Output operation has failed

(iii) bad () : Returns true if an invalid operation.is attempted o
occurred. However, if it is false it may be possible to reco mp T any unrecoverable error has

ver fi
continue operation. fom any other error reported and
(iv) good () : Returns true if error has occured. Thi
instance, if file.good () is true, all is well with the stream file and we can proc
operations. When it return false, no further operations can be carried out, proceed to perform 1/0
The functions may be used in the appropriate p|

laces in a program to locate the st i
stream and there by to take the necessary corrective measures. 4

Q 47. Write a program that displays a texi file. 2009
Ans. ' (PTU, May 2009)

#include <iostream.h>
#include <fstream.h>
void main ()
{
char ch, filename [12] ;
cout <<"Enter name of file to read"
cin >> file name ;
ifstream infile (file name) ;
if (in file. failed ()) {
cout <<"unable to open file" << file name :
return ;
}
cout <<"contents of file :" <<file name 4
while (! in file. eof ()) {
infile.get (ch) ;
cout << ch;
}

infile. close () ;
while (in file)
infile.get (ch) ;

cout << ch;
++ cout ;

}
}

cout << "length of file" << cout ;

Q 48. Write a program in C++ to read a file and to display the contents of file on screen
(PTU, May 2008)

Wwith line numbers.
Ans,
#include <iostream.h>
#include <fstream.h>
void main ()

152 LO3D> Object Oriented Programming

char filename [12], strname [80] ;
inti=1; . .
cout <<"Enter name of file to read" ;
cin >> file name ;
if stream infile (file name) ;
‘if (infile. fail ())

cout <<"unable to open file" << file name;
return; :

cout <<"contents of file are" ;
while (! infile. eof ())

infile.getline (str name, 80) ;

cout <<"line" << i ;

cout. write (str name, strlen (str name)) ;
i++;

cout <<end | ;

)
}

Q 49. Write a C++ program to copy the contents of one file to another file.
(PTU, Dec. 2009, 2008, 2005 ; May 2011, 2008, 2005)

infile. close () ;

Ans. #include <iostream.h>
include <fstream.h>
{
charch;
ifstream infile ("ABC. Txt") ;
ofstream outfile (“BCD.Txt") ;
while (infile)
{
infile.get (ch) ;
outfile. put (ch) ;
}
Q 50. Distinguish between binary and text files. (PTU, May 2010)
Ans. Binary files and text files both are used to storage and subsequent retrieval of data. These
files are used to correct the incorrect data and to update the correct form of data. Binary files are :
sequential access files and text files are random access files. In binary files, the data or text can be
stored or read back sequentially. In text file, data can be accessed and processed randomly. Binary
files are used to store program files. And text files are used as data files.
Q 51. What the text and binary modes have to do with files?
Ans. To use text mode of file we do not include the ios : : binary flag in their opening mode.
These files are designed to store text and thus all values that we input or output from/to them can

Exception Handling

163
formatting transformations, which do not ne : — ;
suffer some = cessarily correspond 1o their literal bin
value. Whenever you open a file i textual mode and start to reaq it, the operating system r:on\.\'aar?:;sr
each carriage-return and line-feed character pairs to asingl
o a file opened in textual mode all line-feed characters pr

carriage-return and a line-feed character.

Binary files are simple_. Bytes follow each other and when we read or write such a file the
Opera[ing sys_tem r(_as_uds or wr_ltes ﬂ?e bytes as they are without any conversion. Whenever you want to
go to a certain position of a file using the command seek, you can without problem.

Q 52. What is the mode ‘rb+’ in file handling?

Ans. rb+ used for read write from binary file.

Q 53. Explain the error handling during file operations in C++,

e line feed character. Whenever you write
oduce two characters in the output file: a

PTU, Dec, 201
Ans. Eof () —used to check the end of file character. (Dec.2010)

fail () — used to check the status of file at opening for /O,
bad () — used to check for invalig file operations or unrecoverable error,

good () — used to check whether the previous file operation has been successful.
Q 54. How random access is done forfiles?

Ans. To access a random file the following functions are used :

(a) seekp — it allows us to set the put pointer.

(b) ssekg - it allows us to set the get pointer.

(c) tellg —to enquire the current position of get pointer.

(d) tellp — it tells the current position of put pointer.

Q 55. Explain the difference between the mode “r" and the mode “r+",

Ans. The mode “r* opens the files for reading only, whereas the mode “r+" open the file fo
reading and writing.

Q 56. Explain the difference between the mode “a” and mode “a+".

Ans. The mode “a” open the file for writing only (at the end of the files), whereas the mode “a+
opens the file for reading and writing (again at the end of the file).

Q 57. Write main () program that include everything necessary to call the functions give
below :

Given function :
Int timer 2 (inta)

return (a*2);

Ans. main ()

int times 2 (int); lIPrototype
int alpha = times 2 (37); Il Function call

}

Q58. Write a function called () that has two integer arguments. The function will ret
the value of the sum of these two arguments.

.Ans' add (x. Y)

int x, y:

{

30> Object Oriented Programm;
LO . j gramming

154
return (X +Y);

})
Q 59. Describe different file opening modes in C++._ B .
Ans. We create the file in one statement and open it in another, using the open () functiop

which is a member of the fstream class.))
In the open () function we include several mode bits to specify ceral

we are opening. Following are the modes for opening file in C++:

n aspects of the file objegy

Mode - Meaning

1. in open for reading
(default for ifstream)

2. out open for writing
(default for ofstream)

3. app : start reading or writing
at end of file (APPend)

4. ate erase file before reading
or writing (trunc ATE)

5. nocreate error when opening if file does not already exists

6. noreplace error when opening for output if file already exists, unless ate or app is set
7. binary open file in binary (not text) mode.

Q 60. Write a program to count non-vowels in a file of test.

Ans.
/*PRG TO COUNT NO OF NON VOWELS IN FILE*/

#include <iostream.h>
#include <conio.h>
#include <fstream.h>
#include <stdio.h>
void main ()
{
clrser () ;
intcnt =0;-
char fname[15), line [80] ;
cout <<“Enter file name :”;
cin >>fname ;
ifstream fin;
fin.open (fname, ios : : in);
while (fin)
{
fin.getline (line,80);
puts (line); -
for (int i=0; line[i}! = '0'li++)
if (line[i]!="a'&&line[i]!="e'&&lineli])!="i'&&lineli]!="0'&&line[i]!="u'&&line[i]!"
='A'&&line[i]!'="E'&&line[i]!="I'&&line[i]!='0'&&lineli]!='U")
cnt++;

fin.close ();

Exception Handling

155

Q 61. Write a program to co
iy prog PY the content of ong.fi|e to another in the text mode.
/* TO COPY ONE FILE TO ANOTHER._....)
#include<iostream.h>
#include<conio.h>
#include<fstream.h>
#include<stdio.h>
void main ()
{
clrscr () ;
char fname [15], line [80];
cout <<"Enter file to copy : * ;
cin>>fname ;
ifstream fin;
ofstream fout;
fin.open(fname, ios : : in); //OP
sk e L L :)app} ;ENING FILE IN READ ONLY MODE
while (fin)
{

fin. getline (line,80) ; /READING FILE LI
fout <<line<< “\n" : NEBERNE

}
finclose (); -
fout. close () ;
fin. open (“temp”, ios : : in ; /IOPEN
il)i ING FILE IN READ ONLY MODE
{ ;

fin.getline (line, _80); //READING FILE LINE BY LINE

fin.close ();
getch ();
}

: 62. What are the various types of files? How are they handled in C++?
e :18 In the real worlfd, computer applications need to store large amounts of data for extended
e oftime. To accomplish the task of storing large amounts of data, data files are used. There a;

0 types of data files - . N
e 1-.Seq uel'!tial access files : These files must be accessed in the same order in which they
i c\:\.'ntten. This process is analogous to audio cassette tapes where you must fast forward or
Séquen:i};?'l:gh the songs sequentially to get to a specific song. In order to access data from a

ile, yo inni i
T bl you must start at the beginning of the file and search through the entire file for the data
e 2. Random access files : These files are analogous to audio compact disks where you can
fiIeSI y access any song regardless of the order in which the songs were recorded. Random access
disE allow instant access any data in the file. Unfortunately, random access files often occupy more
SPace than sequential access files. ;
File handling methods : The /O system of C++ contains a set of classes that define the file

. : Programhi
156 : LO3D> Object Oriented i oting

ses are derived frg
handling methods. These include ifstream, ofstream, and fstream. Tgesfei,l:‘-:afsollowirig methods a:g'
fsstl:ea:':%ase and from the corresponding iostream class. To open the

: . bject to man,
W 1. Opening a file using constructor : To open the file create a file stream ob) age

i ut stream and
he stream using the appropriate class that is the ofstream is us.'.e_d_ tq cre:teé‘l‘::oil;g;t e desifgz
::I:sz istream to create the input stream. After creating object initialise the
; i “ » t.
ﬁlenan;tzr example the following statement opens a file named “results” for outpu
fstream outfile (“results”) ; - f .
This coreates outfile as an ofstream object that manages tr}e output_strf:r:\;f;g:l?erl: c}:\eg ollowing
statements declares infile as an ifstream object and attaches it to the file “da
ifstream infile (“data”) ; . _ -
The connection with file is closed automatically when thebstre:;r; tc:)b::e;; :z:::lrl:;e R i
i - i nbeu
. Opening file using open () : The function open ca !
the saﬁm :;reamgobiect. To opén a file, first we create a single stream object as follows
File-stream-class stream-object ;
Stream-object.open (“filename”) ;
Forexample
Ofstream outfile ;
Outfile.open (“DATA1") ;

outfile.close () ; i
e use of command line arguments? . » May
2:: .g)rr‘nartni:n?line arguments are used to pass the name of atdatz f;ﬁ :noei?sa'?ﬁl::f?:;?nééz
: ine i i itself be given two ar ; ;
line argument the main () function must itse _ t
:zageic;m?haangt:l nurgbar of comand line arguments. The system s_tores the command line argumen
aspstrings in memory and creates an array of pointers to these strings.
#include <iostream.h>
#include <fstream.h>
void main (int argc, char*argv [])
{
ifstream infile ;
ofstream ouffile ;
charch;
infile.open (argv [1]) ;
outfile.open (argv [2]) ;
if (in file)
{
cout <<“can’t open” <<argv [1] ;
exit (0) ;

\}Nhile (infile.get (ch)! = 0)
{
outfile.put (ch) ;

}
}

Exception Handling

Q 64. What are various types of

iles? What 1o
opened? Explain by giving examples. are the varioys

pefiod of time. To accomplish the tas
two types of data files :

Modes in which afile

(PTU, May 2012)
ata for extended

Ans. In the real world, computer application

& onters isks where you can
files allow instant access any data in file Unfondzgzlthr:r‘:!:?nngictere s ek
space than sequential access files. = fles often occupy more disk

File Opening Mode

Mode Meaning

1.in open for reading (default for reading)

2. out open for writing (default for ofstream)

3.app start reading or writing at end of file (APPend)

4. ate erase file before reading or writing (tfrunc-ATE)

g. no crelate error when opening if file doeg not already exist

. no replace error when oepning for ou
7. binary open file in bin‘;ry {gnot textt;JrL::or:j':e B SOt

class.

Q 65. Explain the various methods of re

Ans. Following are the methods for readin
1. Reading character data : Data can be

ading a text file, PTU, Ma
g atext file. s e

read using character input function get() of ifstream
€.g. #include <iostream_ hs>

#include <fstream.h>

void main ()

charch;

char filename [12];

cout <<“Enter name of file to read" ;
cin >> filename :

ifstream infile (file name) ;

if (infile.fail @)

{

cout <<“unable to open file” ;
return ;

}

cout <<“contents of filg” ;
while (! infile.of (7)) ;
infile.get (ch);

cout <<ch ;

}

and output operations on files.

stream. Similarly, the function get () reads a single character fr

LO3DS Object Oriented Programming

infile.close () }
-} . .
2. Reading string data : String data can be read using string input function getline () of

ifstream class.

e.g. #include <iostream.h>
#include <fstream.h>

void main ()

{

char filename [12], strname [80] ;
cout <<"Enter name of file to read” ;
cin >> filename ;

ifstream infile (file name) ;

if (infile.fail ())

cout <<‘unable to open file" << file name ;
return ; '

}

cout <<“contents of file” <<file name ;
while (! infile.eof ())
}

infile.getline (strname, 80);
cout.write (strname, strlen (strname)) ;

infile.close () ;

med on files.

Q 66. Write various /O operations perfor
ber of member functions for performing the input

Ans. The file stream classes support a num

e function put () writes a single character to the associated

1.Put () and get () functions : Th
om the associated stream.

Program to demonstrate /O operators on characters
. #include <iostream.h>

#include <fstream.h>.

#include <string.h>

int main ()

{

char string [80];

cout <<“Enter a string”;
Cin >> string;

int len = strlen (string);

stream file;
Cout <<*\n opening the ‘Text file and storing the string in if;

file.open (“Text”, ios : : infios : : out);
for (inti=0,i<len;i++)

file.put (string [i]);

file.seek g (0);

char ch;

0 andget () haqdle lI?e data in binary form. Thi
the same format in which they are stored in the :flt::\aa? fn?;t the valyes a
ory.

. arith

gxception Handling
cout <<"Reading the file contents™
while (file)

159

{
file.get (ch);
cout <<ch;

return 0'
2. Write () and read () functions : The functions wri

Program to demonstrate /O i ?
#include <iostream.h> operations on binary files
#include <fstream.h>

#include <iomanip.h>

const char * file name = “BINARY™

int main () *

{
float height [4] = {175.5, 153.0 '
ofstream outfile; s 1000
outfile.open (file name);
outfile.write ((char x) & hei i i
outfile.close ();) e (heigh));
for(inti=0;i<4;i+4+)
height [i] = 0;
_ifstream infile;
|n:ile.open (filename);
infile.read ((char x) & hei i i
;or et oat +)+} eight, size of (height));
cout.set f (ios : : showpoint):

- point)
cout << setw (10 s
y (10) <<set precision (2) <<height [i]};

infile. close ();
return Q;

Q67.Howis th i
rithmetic excepti © éxception handling performed in C++ ? Write program that throws
Plion as and when a number m" tsrtha? n 9999.
inputisg (PTU, D!e.a'ﬂm
A 3 7

Ans. Exce
ption h
ngram : andﬁﬂg Pﬁl'formed in C++: Refesr to Q.No. 16

#fnclude <iostream.h>
#include <string>

Using Nnames
i Pace std;
}nt main () std;

160
int num;
string str_bad = “wrong number used”;
cout <<"input number.
Cin>> num;
try.
If (hum==1)
{
throw 5;
}
’f (num — 2)
{
throw ;
}
If (num > 9999)
{

throw str_bad
}
}
}

catch (int a)
{cout <<"An exception occurred!” <<endl;
cout <<“Exception number is” <<a<<endl;

}
Catch (float b)
{

cout <<"An exception occured>> end|;
cout <<“exception number is"<> endl;

}
Catch (...)
{

Cout <<"A default exception occurred “<<endl;

Cout <<"why?"<< str_bad <<end|;
}

return 0;

}

the macros?

Ans. Advantages of using Function Templates :

Q 68. What are the advantages of using Template functions? How are they

: ob'ectOriented Program
Lo3D> VD) \rmng

differentfron
(PTU, Dec. 2014

Q Avoids writing the identical function again and again for the different data types-

O Reduce the storage space.

Q Easyto debug, because only the small portion of the code (template) is debuggedin

more number of functions.

Differences between templates and macros :
@ Macros are not type safe; that is, a macro defined for integer operations cann

steat

ot ace#

float data. They are expanded with no type checking.

ption Handling 161
a Itis difficult to find error in macros.
O Incaseavariableis post-incremented or decremented, the o eration i i i

Q 69. What is the use of Templates in C++? Explain the use of%ta:::rl: f::: e:a:::'rm‘

sith the help of a C++ Program. Also Explain how exceptions are caughtin C. d o

Exce

.

OR (PTU, Dec. 2014)

at are templates? Explain the need of templates,
‘;\v:s. Templates : Template is one of the features added to G4 e I(t':::'e tacy 2019)
which enable us to define generic classes and functions and thus provides support for generic
g i Atemplatercantie isedio craais a family of classss or functions. For example, a class
template for an array class would en:a_ble us to create arrays of various data types such as i‘nt i
and float array. Similarly, we can define a template for a function, say null (), that would help us 13;
create various versions of null () fpr multiplexing int, float and double type values.
Need for Templates : Consider the following function written for adding two integers
Void add (int a, int b) :
{ .
int sum ;
sum=a+b;

deition of numbers of multiple data types may be required in any real program. When different
data types like float or double are required to be added, one has to change the data types in the
programs. A programmer usually rewrites the functions at the desired locations with appropriate data
types using cut and paste. This cause unnecessary hassles and sometimes compile time errors.
Another way of achieving addition of different data types is provided by function overiocading. Function
overloading requires coding of as many functions as there are combinations of data types. These
hassless can be avoided by using function templates.

Program :

1l C++ function template example, the base of class template

#include<iostream>

using namespace std;

I function template declaration and definition

template<class any_data_type>

?ny__data_type MyMax(any_data_type var1, any_data_type var2)

returnvari>var2 ? vari:var2;

}

int main(void)

cout<<"MyMax(10,20)="<<MyMax(10,20)<<endl;

Cout<<"MyMax('Z', p')="<<MyMax('z', p')<<endt;

Cout<<"MyMax(1.234, 2.345)="<<MyMax(1.234, 2.345)<<end!:

llsome logical error here ?

Cout<<"\n Logical error, comparing pointers instead of sting........."<<end!;
char*p="Function™:

char‘g="Template":

Cout<<"Address of *p="<<&p<<end!;

-‘,"'.’)r

162
o LO3D) Object Oriented Programmin
cout<<"Address of *g="<<&g<<end|; s
cout«"MyMax(\"Function\".\"Template\"}~"¢<M M
= a.x -
cout<<"Should use specialization, shown later .y (l:.q}«er?dl,
return O; renesTasedh
}

n of a program. A C++ exception isg
Program is running, such as an attermpy
rol from one part of a program to anothgr
catch and throw. '
blem shows up. This is done using a throy

to divide by zero. Exceptions provide a way to transfer cont
C++ exception handling is built upon three keywords : try
throw : A program throws an exception s
oo, ption when a pro
where‘;?::: ; :: :J;?]gracr;l': catches an exception with an exception handler at the place in a program
ry : Aty block denties & ook or et o reycc2128 e catching o an exception
- S a block of code for whic i i i S ate
followed by one or more catch blocks. h particular exception will be activated, It's
5 t-:-:: gatch block following the try block catches any exception. You can specify what type of
excep you wapt to catch and this is determined by the exception declaration that appears |
parenthesis following the keyword catch. il
try
{
// protected code
}
catch (ExceptionName e)
{
// Code to handle ExceptionName exception.
}
Q 70. Write a function template to find maximum of three numbers.
Ans, Function template to find maximum of three numbers.
include <iostream>
include <cstring>
include <string>
template <typename T>
inline T const &max (T const & a, T const & b)
returna<b?b:a;
}
inline char const* max (char const * a, char const *b)
{ return std : : strcmp (a,b) <0 ? b:a;
}
template <typename T>
inline T const &max (T const&a, T const&b, Tconst&c).

{

return max (max (a,b),c);

}

int main ()

{

(PTU, May 2015)

Exceptiﬂn

163

Handling
- cout << : : max (7, 42, 68);
std - g1 = “frederic’;
constchar S’ = lea™
const char "s2 = 8 o
coﬂst char *s3 = lucas™;
hy it is necessary to handle an exception by special code?
ble exception and use a try block to throw itand a catcl';
velo . (PTU, May 2015
E:Jck to handle “tP;:F.“;t:,y;xception is a problem that arises during the execution of a program. A
Ans. ,E’“.:ep I S o nse to an exceptional circumtance that arise while a program is running such
G+ puosplion adr-?,-i;:: by zero. Exceptions provide a way to transfer control from one part of a
as an attempt t& : C++ exception handling is built upon three keywords : try catch and throw. In
o DS Btic')n is handled by saving the current state of execution in a predefined place and
gneral, ar eme'sculion to a specific subroutine known as an exception handler. If exceptions are
sw“{? h::;gblt: etr?: handler may later resume the execution at the original location using the saved
contin '
information.
Exception A
Program : The following is an‘examp
it in catch block.
#inlcude <iostream>
using namespace std;
double division (int a, int b)
{
If (b ==0)
{
throw “Division by zero condition;”
}
return (a/b);
}
int main ()
{
int x = 50;
int y= 0;
double Z = 0;
try {
Z = division (x,y);
cout <<z <<endl;
} cateh (const char *msg) {
Cerr << msg << endl;

} i tion ? W|
.Whatisan exc_ept
Gp?; program containing possi

handling machanism : Referto Q.No. 13 _
le which throws a division by zero exception and we catch

return Q;
4 }
€cause we are raising an exception of type const char* so while catching this exception, we

have to yge b .
followmg YESEE:HS’ char * in catch block. If we compile and run above code, this would produce the

Division by Zero conditions !

164 LOIDS Object Oriented Programy
9

Q 72. How you can open and close a file ? (PTU, Dec, 5
Ans. You can use the open function to open a file, the close function to close a file, i 015]
Q73. Differentiate between function template and class template. (PTU, Dec, 24
Ans. Difference between class and function templates : Remember that for function tef:n v
the compiler can infer the template arguments : Plte,
int i = max (4,5);
int j = max <int> (7,2); //OK, but not needed.
Ff’f class templates, you always have to specify the actual template arguments; the compi
does not infer the template arguments : i
List primes; /Error
primes.append (2);
Q 74. What are templates ? Write their syntax and usage. Design a function tempjage ;
C++ to sort an array. (PTU, Dec 2{;111
. Ans. Templates : Template is one of the features added to C++ recently. It is new c'once'i]
which enap[e us to define generic classes and functions and thus provides support for QEHerFT
programming. A template can be used to create a family of classes or functions. For example, a c|aslc
template for an array class would enable us to create arrays of various data types such as int ar,as
and float array. Similarly, we can define a template for a function, say null (), that would help us ,i
create various versions of null () for multiplexing int, float and double type values.
Syntax for template declarations is :

Sk iiavienne Plaspavavins =00
‘—export

> ..otemplate ... <.........template_parameter _list........ = A
declaration ><

#include<iostream>
#include<cstdlib>

using namespace std;

template<classT> void quick sort (T a[], const int & leftarg, const int & rightarg)
{

if(leftarg <rightarg){

T pivotvalue = a[leftarg];

int left = leftarg — 1;

int right = rightarg + 1;

for (ii){

while (a [--right] > pivotvalue);

while (a [++left] < pivotvalue);

if(left > = right)break;

T temp = a[right];

a[right] = a [left];

a[left] = temp;

}

int pivot = right;
quick sort (a, leftarg, pivot);
quick sort (a, pivot +1, rightarg);

}
}

in (void){

int main
int sortone [1 oF
for (int i = 0; <103 i+t

sotmefil=rand ()i
cout <<sort oné [[]<<"

h
cout <<endl;

: int>
quick sort <INt 2%~
for (int i = 0;i<10;
C'Out <<endl;
return 0;

(sortone, 0, 10-1); ‘
i ++) cout <<sortone [i] <<n

Make use of the

i m to copy the content of a data file to another file.
e > (PTU, May 2016)

}
Q75.W

exception handling conditions also.

Ans. #include <iostream.h>
#include <fstream.h>

{
try
{

char ch;
ifstream infile (“ABC. Txt");
ofstream outfile (“BCD.Txt");

While (infile)

{

infile.get(ch);
outfile.put(ch);
}

}

Catch (exception e)

cout<<"Not Copied”

}
}
g 76. Name various standard classes of C++. (PTU, May 2017
ns. The C + + standard library can be categorized into two paris. The standard functior

library, This Ii :
This library consists of general purpose, stand-alone functions that are not part of any class

The function library is i i
Ty is inherited from C. The object orient ¢ i is i i
it P iy i lass library. This is a collection o

Q77. Wri ; .
Write a function template to find the minimum of three numbers. (PTU, May 2017

Ans, Function tem £
: emplate to find mini .
#include iy nimum of three members :

#include <string>
#include <string>
:ﬁ;ﬂplate <typename T>
i
ne T const & max (T const & a, T const & b)

IS dt‘.“mﬂﬂ Bggea

LO3D> Object Oriented Programm; ng

retuma>b?b:a.

]

J

inline char const * min (char Const * a, char Const * b)

{

return std : : stremp (a,b) >0 ? b : a;
It}ernplate <typename T>

Emme T const & max (T const & a, T const & b, T const & c).
return min (min (a, b), c);

t}m main ()

{
std::cont<<::min (7, 4, 2, 6, 8)

const char *S1 = “frederic”;
const char *S2 = “ariea”;
const char*S3 = “lucas”;

}
aad

1.
2.
3.

Q.

Q2

Qs.

Q4.

Qs.
Qs.

Q7.
Qs.

Qo.

mstructians to candidates i
Alis compulsory-

ns from section B.
from section C.

SECTION — A

jon ? Discuss with an example.

gection
Attempt any
select any two

four questio
questions

data abstract
control statement ?

friend function ?

the uses of ‘Thus’ pointer 7

bility mode ?

2 Give relevant exam
irtual function ?

(a) What is
(b) What is
(c) Whatis

(d) What are
(e) What do you mean by visi

() What are virtual constructors
(g) What do you mean by pure v
(h) What is operator overloading ?
() What is the difference between get () and put () function.
() What do you mean by file pointer.

SECTION - B
What are the various data type supported by Turbo C++ ? Give memory requirement

of each type.
What are the various types of constructors used with the classes ? Explain with

ples to explain if.

examples,
Differenti ' i
erentiate between static and runtime polymorphism giving example.

\?J?:uss the exception handling features of C++ ?
e various I/O operations performed on files.

SECTION -C
Explain i il di
Wlfat . '31 gfsilétcii;ﬁerent operator in C++. Also give examples
n overloading ? Explai A
‘1 LeTplate function be overloaged ?Xplaln the concert of constructor overloading. Can
at are the varij ; '
various type of inheritance in C++ ? Give an example of each

- -d‘-}g“:um.__

168

LO3DD Object Oriented Programming

I LOXDS> MODEL TEST PAPER — 2 I

Instructions to candidates :

1

Section A is compulsory.

2. Attempt any four questions from section B
3. Select any two questions from section C.

Q1.

Q2

Q 3.
Q 4.
QSs.
Q 6.

Q7.
Q8.
Q9.

SECTION-A

(a) What do you mean by generic programming ?

(b) What is the purpose of Cin and Cout statement ?

(c) What are the characteristics of a constructor ?

(d) What is ‘This’ pointer ? Explain with example.

(e) What are virtual constructors.

(f) What is the difference between static and dynamic binding ?

(@) What are dangling pointer ? Give example.

(h) What are input/output stream in C++ ?
(i) Differentiate between << & >> operators.
() What is type casting ?

SECTION-B _
What is polymorphism ? Give difference between function overloading and overriding
with example.
Distinguish between single and multiple inheritance.
Explain the exception handling mechanism with example.
What is the use of command line arguments ?
What is virtual function ? How we can declare the virtual function ? Also explain the
need for virtual function:

SECTION —-C

Discuss the features of an object oriented programming in detail. |
What is operator overloading ? Explain binary operator overloading.
Describe different file opening modes in C++.

aad

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

